| 研究生: |
陳哲雄 Chen, Che-Hsiung |
|---|---|
| 論文名稱: |
非病毒式體外基因轉殖技術於骨骼損傷治療之開發 Development of Non-viral ex vivo Gene Transfection on Bone Fracture Therapy |
| 指導教授: |
楊寧正
Yang, Lin-Cheng 張憲彰 Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 組織工程 、基因治療 、造骨蛋白質 、生物性幫浦 、生物降解性材料 、體外的基因治療 |
| 外文關鍵詞: | human neuro-teratocarcinoma cell, ex vivo gene therapy, biologic pump, biodegradable material, bone morphogenetic protein-2 |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的骨骼治療技術以硬質板將受傷部位予以固定或使用骨釘來連接,並配合骨泥來填補受損的部位,這樣子的治療方式帶給病人許多的不便利。近年由於組織工程和基因治療的進步,促使著骨骼治療技術的提昇,更是病人的一大福音。在本研究中我們將結合這兩項的治療技術,發展體外非病毒式的基因治療模式,來幫助骨骼修補及再生。
在此利用化學載體- polyethylenimine (PEI) 將造骨蛋白質載入human neuro-teratocarcinoma (hNT) cell,改變細胞本身的功能,讓他可以分泌骨骼生長所須之造骨蛋白(Bone morphogenetic protein),進而成為一個良好的生物幫浦(biologic pump)。但為了評估載入基因表現強度,以利用免疫細胞染色法(immunocytochemistry)配合共軛聚焦顯微鏡法(confocal microscopy) 的解析驗証BMP-2的轉殖成果。從螢光的影像來看,細胞內部確有大量造骨蛋白之存在,同時也採用西方點墨法(western blotting)來分析培養液中的蛋白質含量,結果顯示hNT cells可以表現BMP-2蛋白質而且可以分泌於培養液中。
本研究以體外的基因治療(ex vivo gene therapy) 方式發展骨骼修復治療模式,以非病毒式的基因修飾技術,讓hNT cells分泌造骨造骨蛋白質。未來再配合生物降解性材料,植入於骨骼的損傷的部位,以幫助組織的修補和再生。
Traditional bone fracture therapy requires an external fixation with bone mud at the side of wound. The disadvantages of this type of therapy is poor healing and heavy framing and assembling at wound side. With the advancement of tissue engineering and gene therapy today, bone fracture repair has become a very normative therapeutic technique, and it has ensured a rapid, effective and functional healing of complex fractures in the bone. In this study, we combined both techniques to develop an ex vivo gene therapeutic model to aid bone tissue repair.
A chemical vector, polyethylenimine (PEI) was used to carry bone morphogenetic protein-2 (BMP-2) gene into human neuro-teratocarcinoma (hNT) cell. BMP-2 can stimulate the regeneration of bone. In this study, immunocytochemistry and confocal microscopy were combined to examine the results after BMP-2 transfection. The fluorescent images showed that a great amount of bone morphogenetic protein existed in the cells. Western blotting was used to analyze the protein capacity in the cell culture medium. The results indicated that hNT cells can express BMP-2 protein in cytosol and generate BMP-2 in the cell culture medium.
In this study, a bone repair therapeutic system by ex vivo gene therapy was developed. The production of BMP-2 from hNT cells by non-viral gene-modification method was successfully demonstrated. In future, biodegradable matrix with hNT cells after transfection treatment will be implanted into bone fracture site to aid tissue regeneration and speed up the healing process.
[1] D. B. Hen, “Gene therapy principle & practice,” 九州圖書文物有限公司.
[2] W. T. Godbye and A.G. Mikos, “Recent progress in gene delivery using non-viral transfer complex,” Journal of Controlled Release, 72, 115-125, 2001.
[3] P. D. Robbins and S. C. Ghivizzani, “Viral vector for gene therapy,” Pharmacology Therapy, 80, 35-47, 1998.
[4] P. Horellou, A. B. Bleuel, and J. Mallet, “In vivo adenovirus-mediated gene transfer for Parkinson’s disease,” Neurobiology of Disease, 4, 280-287, 1997.
[5] X. Xiao and J. Li, “Gene transfer by adeno-associated virus vectors into the central nervous system,” Experimental Neurology, 144, 113-124, 1997.
[6] J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, 135-160, 1996.
[7] B. P. K and W. BC, “High-level gene transfer to the cornea using electroporation,” Journal of Gene Medicine, 4, 92-100, 2002.
[8] Y. C. Lin and C. M. Jen, “Electroporation microchips for continuous gene transfection,” Sensor and Actuators, 79, 137-143, 2001.
[9] N. Oku and Y. Yamaki, “A novel non-viral gene transfer system, polycation liposomes,” Advanced Drug Delivery Review, 52, 209-218, 2001.
[10] W. T. Godbey and K. K. Wu, “Tracking the intracellular path of poly(ethylenimine)/DNA complex for gene delivery,” Proceedings of the National Academy of Sciences of the United States of America, 96, 5177-5181, 1999.
[11] W. T. Godbey and K. K. Wu, “Poly(ethylenimine) and its role in gene delivery,” Journal of Controlled Release, 60, 140-160, 1999.
[12] J. H. Jeong and S. H. Song, “DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-oxazoline),” Journal of Controlled Release, 73, 391-399, 2001.
[13] W. Zauner and M. Ogris, “Polylysine-based transfection systems utilizing receptor-mediated delivery,” Advanced Drug Delivery Review, 30, 97-113, 1998.
[14] A. R. Kristensen and J. P. Clamme, “Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complex,” Biochimica et Biophysica Acta, 1514, 21-32, 2001.
[15] J. S. Remy and B. Abdallah, “Gene transfer with lipospermines and polyethylenimines,” Advanced Drug Delivery Review, 30, 85-95, 1998.
[16] A. Kichler and C. Leborgne, “Polyethylenimine-mediated gene delivery: a mechanistic study,” The Journal of Gene Medicine, 3, 135-144, 2001.
[17] A. R. Klemm and D. Young, “Effects of polyethyleneimine on endocytosis and lysosome stability,” Biochemical Pharmacology, 56, 41-46, 1998.
[18] T. A. Linkhart and S. Mohan, “Growth factors for bone growth and repair: IGF, TGFß and BMP,” Bone, 19, 1s-12s, 1996.
[19] Trojanowski and Q. John, “Transfectable and Transplantable Postmitotic Human Neurons: A Potential "Platform" for Gene Therapy of Nervous System Diseases.,” Experimental Neurology, 144, 92-97, 1997.
[20] Morris V. J. and Kirby A. R., Atomic force microscopy for biologists, Imperial College Press: London, 1999.
[21] 吳靖宙, 張憲彰, “掃描式探針顯微鏡於生物樣本的量測與應用,” 科儀新知第二十三卷第五期, 88~98, 2002.
[22] 江安世, “共軛焦雷射掃描顯微鏡技術,” 科儀新知第二十二卷第五期, 58~65, 2001.