簡易檢索 / 詳目顯示

研究生: 謝玉慈
Hsieh, Yu-Tzu
論文名稱: 利用系統多因子技術探討躍出效應的特徵處理歷程
Using Systems Factorial Technology to Investigate the Feature Processing of the Pop-Out Effect
指導教授: 楊政達
Yang, Cheng-Ta
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 128
中文關鍵詞: 系統多因子技術顯著圖特徵處理眼動儀
外文關鍵詞: systems factorial technology, saliency map, feature processing, eye tracking
相關次數: 點閱:33下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 躍出視覺搜尋在顯著圖是重要的概念,近年來廣泛應用在使用者介面設計,若能了解顯著機制和認知處理歷程的關係,可以有效提升操作介面的效率。過去研究以不同的低階特徵組成來探討躍出效應之訊息處理歷程,然,對於冗餘目標研究所得到共同激發處理結果有過度推論之虞(Krummenacher et al., 2002; Zehetleitner et al., 2009)。因此,本研究利用系統多因子技術,將訊息處理細分處理架構、終止原則以及處理容量三個核心概念,探討特徵累積成顯著圖的處理歷程。同時以眼動儀與按鍵行為測量決策歷程,提供不同工具測量處理歷程的可能。實驗一討論方向亮度特徵組合之躍出效應訊息處理,利用3x3雙因子典範,了解雙重目標情境的決策歷程。結果發現序列自我終止、有限容量處理策略結果,且行為反應與眼動儀結果推論一致;實驗二討論方向顏色特徵組合之躍出效應訊息處理,研究方法皆與實驗一相同,結果為平行自我終止原則、有限容量處理策略,行為反應與眼動儀結果一致。研究結果顯示,認知處理歷程會隨著不同特徵組合,展現不同處理特性,在方向亮度以及方向顏色特徵組合,發現與過去推論共同激發歷程不同。認為特徵之間的重疊機制以及獨立處理能力,影響處理特徵躍出效應的策略。此外,本實驗之眼動儀偵測與按鍵行為推論的處理決策結果一致,提供眼動行為和其他生理回饋儀整合應用的基礎。

    This thesis used systems factorial technology to investigate whether different combinations of low-level features are processed onto saliency maps in a coactive model via behavioral measurement and eye-tracking. Experiment 1 examined the pop-out effect of luminance and orientation features using a 3x3 factorial design to generate the feature combinations. The results revealed that information is processed in a serial, self-terminated manner with limited capacity. Experiment 2 investigated the pop-out effect of color and orientation features using the same procedure as experiment 1. The results showed a parallel, self-terminating process with an unlimited capacity. We suggest that the pop-out effect of different feature combinations can influence attention processing in various manners of decision-making. In addition, the same feature processing, derived from behavioral measures and eye tracking, also provides a foundation for the SFT inferences in the literature.

    摘要i 誌謝vii 目錄viii 表目錄xiii 圖目錄xv 第一章 緒論 1 研究動機與背景 1 研究目的 4 第二章 文獻回顧 6 顯著性系統 6 顯著圖 6 維度權重 8 其他顯著性研究 10 小結 12 顯著性與決策歷程的處理特性 14 顯著性與處理特性 14 決策歷程的處理特性 14 處理架構與終止原則 15 處理容量 17 總結 19 研究假設 20 第三章 實驗一 22 方法 22 參與者 22 研究儀器與設備 23 實驗設計與刺激材料 24 實驗程序 28 統計及分析方法 30 結果 36 一、實驗一A鍵盤按鍵偵測方式分析結果 36 正確率及反應時間 36 選擇性影響假設檢測 37 處理架構與終止原則的推論 42 處理容量的推論 45 二、實驗一B眼動儀偵測方式分析結果 48 反應時間 48 選擇性影響假設檢測 48 處理架構與終止原則的推論 53 處理容量的推論 56 統整 59 特徵維度反應時間比較 61 討論 63 第四章 實驗二 64 方法 64 參與者 64 研究儀器與設備 65 實驗設計與刺激材料 65 實驗程序 68 統計分析與方法 69 結果 70 一、實驗二A鍵盤按鍵偵測方式分析結果 70 正確率及反應時間 70 選擇性影響假設檢測 71 處理架構與終止原則的推論 76 處理容量的推論 79 二、實驗二B眼動儀偵測方式分析結果 82 反應時間 82 選擇性影響假設檢測 82 處理架構與終止原則的推論 87 處理容量的推論 90 統整 93 特徵維度反應時間比較 95 討論 98 第五章 綜合討論 99 研究結果與討論 99 處理架構 99 處理容量 100 總結 102 未來研究方向與研究限制 103 特徵組合的選擇 103 特徵顯著性的設計 103 目標呈現與非目標呈現頻率 104 目標刺激呈現的位置 104 躍出效應與顯著性關係 104 眼動儀注意力行為指標 104 設備儀器的選擇 105 參考文獻 106

    Bahr, G. S., & Ford, R. A. (2011). How and why pop-ups don’t work: Pop-up prompted eye movements, user affect and decision making. Computers in Human Behavior, 27(2), 776-783. https://doi.org/10.1016/j.chb.2010.10.030
    Blaha, L. M., & Houpt, J. W. (2015). An extension of workload capacity space for systems with more than two channels. Journal of Mathematical Psychology, 66, 1-5. https://doi.org/10.1016/j.jmp.2015.01.002
    Colonius, H., & Diederich, A. (2006). The race model inequality: interpreting a geometric measure of the amount of violation. Psychol Rev, 113(1), 148-154. https://doi.org/10.1037/0033-295X.113.1.148
    Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci, 11(8), 2383-2402. https://doi.org/10.1523/JNEUROSCI.11-08-02383.1991
    Deco, G., Pollatos, O., & Zihl, J. (2002). The time course of selective visual attention: theory and experiments. Vision Res, 42(27), 2925-2945. https://doi.org/10.1016/s0042-6989(02)00358-9
    Dzhafarov, E. N. (1999). Conditionally Selective Dependence of Random Variables on External Factors. J Math Psychol, 43(1), 123-157. https://doi.org/10.1006/jmps.1998.1231
    Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1-47. https://doi.org/10.1093/cercor/1.1.1-a
    Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: investigating a "dimension-weighting" account. Percept Psychophys, 58(1), 88-101. https://doi.org/10.3758/bf03205479
    Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Percept Psychophys, 35(5), 451-463. https://doi.org/10.3758/bf03203922
    Grice, G. R., Canham, L., & Gwynne, J. W. (1984). Absence of a redundant-signals effect in a reaction time task with divided attention. Percept Psychophys, 36(6), 565-570. https://doi.org/10.3758/bf03207517
    Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the Survivor Interaction Contrast. Journal of Mathematical Psychology, 54(5), 446-453. https://doi.org/10.1016/j.jmp.2010.06.006
    Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity analysis. J Math Psychol, 56(5), 341-355. https://doi.org/10.1016/j.jmp.2012.05.004
    Houpt, J. W., Townsend, J. T., & Donkin, C. (2014). A new perspective on visual word processing efficiency. Acta Psychol (Amst), 145, 118-127. https://doi.org/10.1016/j.actpsy.2013.10.013
    Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res, 40(10-12), 1489-1506. https://doi.org/10.1016/s0042-6989(99)00163-7
    Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nat Rev Neurosci, 2(3), 194-203. https://doi.org/10.1038/35058500
    Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254-1259. https://doi.org/10.1109/34.730558
    Katzner, S., Busse, L., & Treue, S. (2006). Feature-based attentional integration of color and visual motion. J Vis, 6(3), 269-284. https://doi.org/10.1167/6.3.7
    Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4), 219-227. https://www.ncbi.nlm.nih.gov/pubmed/3836989
    Krummenacher, J., & Müller, H. J. (2014). Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets? J Exp Psychol Hum Percept Perform, 40(5), 1926-1939. https://doi.org/10.1037/a0037560
    Krummenacher, J., Muller, H. J., & Heller, D. (2001). Visual search for dimensionally redundant pop-out targets: evidence for parallel-coactive processing of dimensions. Percept Psychophys, 63(5), 901-917. https://doi.org/10.3758/bf03194446
    Krummenacher, J., Müller, H. J., & Heller, D. (2002). Visual search for dimensionally redundant pop-out targets: Parallel-coactive processing of dimensions is location specific. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1303-1322. https://doi.org/10.1037/0096-1523.28.6.1303
    Kujala, J. V., & Dzhafarov, E. N. (2008). Testing for selectivity in the dependence of random variables on external factors. Journal of Mathematical Psychology, 52(2), 128-144. https://doi.org/10.1016/j.jmp.2008.01.008
    Lee, J., & Ahn, J.-H. (2014). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. https://doi.org/10.2753/jec1086-4415170105
    Leonards, U., & Singer, W. (2000). Conjunctions of colour, luminance and orientation: the role of colour and luminance contrast on saliency and proximity grouping in texture segregation. Spat Vis, 13(1), 87-105. https://doi.org/10.1163/156856800741036
    Li, Z. (2002). A saliency map in primary visual cortex. Trends Cogn Sci, 6(1), 9-16. https://doi.org/10.1016/s1364-6613(00)01817-9
    Little, D. R., Altieri, N., Fifić, M., & Yang, C.-T. (2017). Systems factorial technology: A theory driven methodology for the identification of perceptual and cognitive mechanisms. Elsevier Academic Press.
    Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci, 7(11), 3416-3468. https://doi.org/10.1523/JNEUROSCI.07-11-03416.1987
    Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Mem Cognit, 22(6), 657-672. https://doi.org/10.3758/bf03209251
    Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Percept Psychophys, 58(7), 977-991. https://doi.org/10.3758/bf03206826
    Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends Neurosci, 29(6), 317-322. https://doi.org/10.1016/j.tins.2006.04.001
    Meißner, M., Pfeiffer, J., Pfeiffer, T., & Oppewal, H. (2019). Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research. Journal of Business Research, 100, 445-458. https://doi.org/10.1016/j.jbusres.2017.09.028
    Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. J Exp Psychol Hum Percept Perform, 17(2), 520-538. https://doi.org/10.1037//0096-1523.17.2.520
    Mordkoff, J. T., & Yantis, S. (1993). Dividing attention between color and shape: evidence of coactivation. Percept Psychophys, 53(4), 357-366. https://doi.org/10.3758/bf03206778
    Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Percept Psychophys, 57(1), 1-17. https://doi.org/10.3758/bf03211845
    Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. J Exp Psychol Hum Percept Perform, 29(5), 1021-1035. https://doi.org/10.1037/0096-1523.29.5.1021
    Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264-265. https://doi.org/10.1038/320264a0
    Nothdurft. (2000). Salience from feature contrast: additivity across dimensions. Vision Res, 40(10-12), 1183-1201. https://doi.org/10.1016/s0042-6989(00)00031-6
    Nothdurft, H. C. (1993). Saliency effects across dimensions in visual search. Vision Res, 33(5-6), 839-844. https://doi.org/10.1016/0042-6989(93)90202-8
    Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Res, 42(1), 107-123. https://doi.org/10.1016/s0042-6989(01)00250-4
    Pollmann, S., Weidner, R., Muller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. J Cogn Neurosci, 12(3), 480-494. https://doi.org/10.1162/089892900562156
    Soltani, A., & Koch, C. (2010). Visual saliency computations: mechanisms, constraints, and the effect of feedback. J Neurosci, 30(38), 12831-12843. https://doi.org/10.1523/JNEUROSCI.1517-10.2010
    Sternberg, S. (1969). Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci, 57(4), 421-457. https://www.ncbi.nlm.nih.gov/pubmed/5360276
    Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: a unified methodology for response time measures of efficiency as workload is varied. Psychon Bull Rev, 18(4), 659-681. https://doi.org/10.3758/s13423-011-0106-9
    Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal Properties of Elementary Perception: An Investigation of Parallel, Serial, and Coactive Theories. Journal of Mathematical Psychology, 39(4), 321-359. https://doi.org/10.1006/jmps.1995.1033
    Townsend, J. T., & Thomas, R. D. (1994). Stochastic Dependencies in Parallel and Serial Models: Effects on Systems Factorial Interactions. Journal of Mathematical Psychology, 38(1), 1-34. https://doi.org/10.1006/jmps.1994.1001
    Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series. Psychol Rev, 111(4), 1003-1035. https://doi.org/10.1037/0033-295X.111.4.1003
    Treisman, A., & Souther, J. (1985). Search asymmetry: a diagnostic for preattentive processing of separable features. J Exp Psychol Gen, 114(3), 285-310. https://doi.org/10.1037//0096-3445.114.3.285
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
    Van Zandt, T. (2000). How to fit a response time distribution. Psychon Bull Rev, 7(3), 424-465. https://doi.org/10.3758/bf03214357
    Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychon Bull Rev, 1(2), 202-238. https://doi.org/10.3758/BF03200774
    Wolfe, J. M. (1998). What Can 1 Million Trials Tell Us About Visual Search? Psychological Science, 9(1), 33-39. https://doi.org/10.1111/1467-9280.00006
    Yang, C. T. (2011). Relative saliency in change signals affects perceptual comparison and decision processes in change detection. J Exp Psychol Hum Percept Perform, 37(6), 1708-1728. https://doi.org/10.1037/a0024257
    Zehetleitner, M., Krummenacher, J., & Muller, H. J. (2009). The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive or interactive race architectures. Atten Percept Psychophys, 71(8), 1739-1759. https://doi.org/10.3758/APP.71.8.1739
    Zeki, S. (1998). REVIEW : Parallel Processing, Asynchronous Perception, and a Distributed System of Consciousness in Vision. The Neuroscientist, 4(5), 365-372. https://doi.org/10.1177/107385849800400518

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE