| 研究生: |
謝玉慈 Hsieh, Yu-Tzu |
|---|---|
| 論文名稱: |
利用系統多因子技術探討躍出效應的特徵處理歷程 Using Systems Factorial Technology to Investigate the Feature Processing of the Pop-Out Effect |
| 指導教授: |
楊政達
Yang, Cheng-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 系統多因子技術 、顯著圖 、特徵處理 、眼動儀 |
| 外文關鍵詞: | systems factorial technology, saliency map, feature processing, eye tracking |
| 相關次數: | 點閱:33 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
躍出視覺搜尋在顯著圖是重要的概念,近年來廣泛應用在使用者介面設計,若能了解顯著機制和認知處理歷程的關係,可以有效提升操作介面的效率。過去研究以不同的低階特徵組成來探討躍出效應之訊息處理歷程,然,對於冗餘目標研究所得到共同激發處理結果有過度推論之虞(Krummenacher et al., 2002; Zehetleitner et al., 2009)。因此,本研究利用系統多因子技術,將訊息處理細分處理架構、終止原則以及處理容量三個核心概念,探討特徵累積成顯著圖的處理歷程。同時以眼動儀與按鍵行為測量決策歷程,提供不同工具測量處理歷程的可能。實驗一討論方向亮度特徵組合之躍出效應訊息處理,利用3x3雙因子典範,了解雙重目標情境的決策歷程。結果發現序列自我終止、有限容量處理策略結果,且行為反應與眼動儀結果推論一致;實驗二討論方向顏色特徵組合之躍出效應訊息處理,研究方法皆與實驗一相同,結果為平行自我終止原則、有限容量處理策略,行為反應與眼動儀結果一致。研究結果顯示,認知處理歷程會隨著不同特徵組合,展現不同處理特性,在方向亮度以及方向顏色特徵組合,發現與過去推論共同激發歷程不同。認為特徵之間的重疊機制以及獨立處理能力,影響處理特徵躍出效應的策略。此外,本實驗之眼動儀偵測與按鍵行為推論的處理決策結果一致,提供眼動行為和其他生理回饋儀整合應用的基礎。
This thesis used systems factorial technology to investigate whether different combinations of low-level features are processed onto saliency maps in a coactive model via behavioral measurement and eye-tracking. Experiment 1 examined the pop-out effect of luminance and orientation features using a 3x3 factorial design to generate the feature combinations. The results revealed that information is processed in a serial, self-terminated manner with limited capacity. Experiment 2 investigated the pop-out effect of color and orientation features using the same procedure as experiment 1. The results showed a parallel, self-terminating process with an unlimited capacity. We suggest that the pop-out effect of different feature combinations can influence attention processing in various manners of decision-making. In addition, the same feature processing, derived from behavioral measures and eye tracking, also provides a foundation for the SFT inferences in the literature.
Bahr, G. S., & Ford, R. A. (2011). How and why pop-ups don’t work: Pop-up prompted eye movements, user affect and decision making. Computers in Human Behavior, 27(2), 776-783. https://doi.org/10.1016/j.chb.2010.10.030
Blaha, L. M., & Houpt, J. W. (2015). An extension of workload capacity space for systems with more than two channels. Journal of Mathematical Psychology, 66, 1-5. https://doi.org/10.1016/j.jmp.2015.01.002
Colonius, H., & Diederich, A. (2006). The race model inequality: interpreting a geometric measure of the amount of violation. Psychol Rev, 113(1), 148-154. https://doi.org/10.1037/0033-295X.113.1.148
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci, 11(8), 2383-2402. https://doi.org/10.1523/JNEUROSCI.11-08-02383.1991
Deco, G., Pollatos, O., & Zihl, J. (2002). The time course of selective visual attention: theory and experiments. Vision Res, 42(27), 2925-2945. https://doi.org/10.1016/s0042-6989(02)00358-9
Dzhafarov, E. N. (1999). Conditionally Selective Dependence of Random Variables on External Factors. J Math Psychol, 43(1), 123-157. https://doi.org/10.1006/jmps.1998.1231
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1-47. https://doi.org/10.1093/cercor/1.1.1-a
Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: investigating a "dimension-weighting" account. Percept Psychophys, 58(1), 88-101. https://doi.org/10.3758/bf03205479
Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Percept Psychophys, 35(5), 451-463. https://doi.org/10.3758/bf03203922
Grice, G. R., Canham, L., & Gwynne, J. W. (1984). Absence of a redundant-signals effect in a reaction time task with divided attention. Percept Psychophys, 36(6), 565-570. https://doi.org/10.3758/bf03207517
Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the Survivor Interaction Contrast. Journal of Mathematical Psychology, 54(5), 446-453. https://doi.org/10.1016/j.jmp.2010.06.006
Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity analysis. J Math Psychol, 56(5), 341-355. https://doi.org/10.1016/j.jmp.2012.05.004
Houpt, J. W., Townsend, J. T., & Donkin, C. (2014). A new perspective on visual word processing efficiency. Acta Psychol (Amst), 145, 118-127. https://doi.org/10.1016/j.actpsy.2013.10.013
Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res, 40(10-12), 1489-1506. https://doi.org/10.1016/s0042-6989(99)00163-7
Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nat Rev Neurosci, 2(3), 194-203. https://doi.org/10.1038/35058500
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254-1259. https://doi.org/10.1109/34.730558
Katzner, S., Busse, L., & Treue, S. (2006). Feature-based attentional integration of color and visual motion. J Vis, 6(3), 269-284. https://doi.org/10.1167/6.3.7
Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4), 219-227. https://www.ncbi.nlm.nih.gov/pubmed/3836989
Krummenacher, J., & Müller, H. J. (2014). Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets? J Exp Psychol Hum Percept Perform, 40(5), 1926-1939. https://doi.org/10.1037/a0037560
Krummenacher, J., Muller, H. J., & Heller, D. (2001). Visual search for dimensionally redundant pop-out targets: evidence for parallel-coactive processing of dimensions. Percept Psychophys, 63(5), 901-917. https://doi.org/10.3758/bf03194446
Krummenacher, J., Müller, H. J., & Heller, D. (2002). Visual search for dimensionally redundant pop-out targets: Parallel-coactive processing of dimensions is location specific. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1303-1322. https://doi.org/10.1037/0096-1523.28.6.1303
Kujala, J. V., & Dzhafarov, E. N. (2008). Testing for selectivity in the dependence of random variables on external factors. Journal of Mathematical Psychology, 52(2), 128-144. https://doi.org/10.1016/j.jmp.2008.01.008
Lee, J., & Ahn, J.-H. (2014). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. https://doi.org/10.2753/jec1086-4415170105
Leonards, U., & Singer, W. (2000). Conjunctions of colour, luminance and orientation: the role of colour and luminance contrast on saliency and proximity grouping in texture segregation. Spat Vis, 13(1), 87-105. https://doi.org/10.1163/156856800741036
Li, Z. (2002). A saliency map in primary visual cortex. Trends Cogn Sci, 6(1), 9-16. https://doi.org/10.1016/s1364-6613(00)01817-9
Little, D. R., Altieri, N., Fifić, M., & Yang, C.-T. (2017). Systems factorial technology: A theory driven methodology for the identification of perceptual and cognitive mechanisms. Elsevier Academic Press.
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci, 7(11), 3416-3468. https://doi.org/10.1523/JNEUROSCI.07-11-03416.1987
Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Mem Cognit, 22(6), 657-672. https://doi.org/10.3758/bf03209251
Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Percept Psychophys, 58(7), 977-991. https://doi.org/10.3758/bf03206826
Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends Neurosci, 29(6), 317-322. https://doi.org/10.1016/j.tins.2006.04.001
Meißner, M., Pfeiffer, J., Pfeiffer, T., & Oppewal, H. (2019). Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research. Journal of Business Research, 100, 445-458. https://doi.org/10.1016/j.jbusres.2017.09.028
Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. J Exp Psychol Hum Percept Perform, 17(2), 520-538. https://doi.org/10.1037//0096-1523.17.2.520
Mordkoff, J. T., & Yantis, S. (1993). Dividing attention between color and shape: evidence of coactivation. Percept Psychophys, 53(4), 357-366. https://doi.org/10.3758/bf03206778
Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Percept Psychophys, 57(1), 1-17. https://doi.org/10.3758/bf03211845
Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. J Exp Psychol Hum Percept Perform, 29(5), 1021-1035. https://doi.org/10.1037/0096-1523.29.5.1021
Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264-265. https://doi.org/10.1038/320264a0
Nothdurft. (2000). Salience from feature contrast: additivity across dimensions. Vision Res, 40(10-12), 1183-1201. https://doi.org/10.1016/s0042-6989(00)00031-6
Nothdurft, H. C. (1993). Saliency effects across dimensions in visual search. Vision Res, 33(5-6), 839-844. https://doi.org/10.1016/0042-6989(93)90202-8
Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Res, 42(1), 107-123. https://doi.org/10.1016/s0042-6989(01)00250-4
Pollmann, S., Weidner, R., Muller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. J Cogn Neurosci, 12(3), 480-494. https://doi.org/10.1162/089892900562156
Soltani, A., & Koch, C. (2010). Visual saliency computations: mechanisms, constraints, and the effect of feedback. J Neurosci, 30(38), 12831-12843. https://doi.org/10.1523/JNEUROSCI.1517-10.2010
Sternberg, S. (1969). Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci, 57(4), 421-457. https://www.ncbi.nlm.nih.gov/pubmed/5360276
Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: a unified methodology for response time measures of efficiency as workload is varied. Psychon Bull Rev, 18(4), 659-681. https://doi.org/10.3758/s13423-011-0106-9
Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal Properties of Elementary Perception: An Investigation of Parallel, Serial, and Coactive Theories. Journal of Mathematical Psychology, 39(4), 321-359. https://doi.org/10.1006/jmps.1995.1033
Townsend, J. T., & Thomas, R. D. (1994). Stochastic Dependencies in Parallel and Serial Models: Effects on Systems Factorial Interactions. Journal of Mathematical Psychology, 38(1), 1-34. https://doi.org/10.1006/jmps.1994.1001
Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series. Psychol Rev, 111(4), 1003-1035. https://doi.org/10.1037/0033-295X.111.4.1003
Treisman, A., & Souther, J. (1985). Search asymmetry: a diagnostic for preattentive processing of separable features. J Exp Psychol Gen, 114(3), 285-310. https://doi.org/10.1037//0096-3445.114.3.285
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
Van Zandt, T. (2000). How to fit a response time distribution. Psychon Bull Rev, 7(3), 424-465. https://doi.org/10.3758/bf03214357
Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychon Bull Rev, 1(2), 202-238. https://doi.org/10.3758/BF03200774
Wolfe, J. M. (1998). What Can 1 Million Trials Tell Us About Visual Search? Psychological Science, 9(1), 33-39. https://doi.org/10.1111/1467-9280.00006
Yang, C. T. (2011). Relative saliency in change signals affects perceptual comparison and decision processes in change detection. J Exp Psychol Hum Percept Perform, 37(6), 1708-1728. https://doi.org/10.1037/a0024257
Zehetleitner, M., Krummenacher, J., & Muller, H. J. (2009). The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive or interactive race architectures. Atten Percept Psychophys, 71(8), 1739-1759. https://doi.org/10.3758/APP.71.8.1739
Zeki, S. (1998). REVIEW : Parallel Processing, Asynchronous Perception, and a Distributed System of Consciousness in Vision. The Neuroscientist, 4(5), 365-372. https://doi.org/10.1177/107385849800400518