簡易檢索 / 詳目顯示

研究生: 郭玉岱
Kuo, Yu-dai
論文名稱: 血質對貝它糊蛋白聚集、毒性的影響
Effects of heme on beta-amyloid aggregation and toxicity
指導教授: 郭余民
Kuo, Yu-min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 33
中文關鍵詞: 糊蛋白血質
外文關鍵詞: heme, beta-amyloid, neurotoxicity
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默氏症 (Alzheimer’s disease, AD),俗稱老年癡呆症,是一種好發在老年人的神經退化性疾病。在腦中的主要病理特徵是:1)神經細胞內的神經纖維化糾結,與2)貝它糊蛋白斑塊沉澱。貝它糊蛋白斑塊沉澱是腦中貝它糊蛋白Amyloid-β (Aβ)不正常的聚集而成,目前被廣泛地認為是造成阿茲海默氏症的主要原因之ㄧ。根據近年來的研究發現,腦中Aβ的聚集可能是由於腦中Aβ不正常的代謝或清除所造成的。而不正常聚集的Aβ則具有神經毒性,會導致神經細胞死亡。有研究指出,血紅素中的血質會與Aβ結合,並共存在阿茲海默氏症患者的腦中。先前實驗室的研究發現,血質會與Aβ結合,並會在西方墨點法中呈現較多的Aβ寡聚體。但由於當血質與Aβ結合後會具有過氧化酶的能力,因此上述的觀察有可能是肇因於西方墨點法冷光顯影階段受過氧化酶干擾的結果。因此,本實驗的目的之一是探討血質對於Aβ聚集的影響。又因Aβ的聚集具有神經毒性,而此特性與阿茲海默氏症的病因息息相關。所以,以血質對於Aβ毒性的影響也是本研究的重點。首先,SDS-膠電泳/銀染色法顯示血質會導致較多的Aβ寡聚體形成,支持我們原先的觀察。然而,表面電漿共振感測結果卻顯示血質對於Aβ聚集沒有顯著的影響。以穿透式電子顯微鏡負染色法我發現血質並不會改變Aβ纖維化的過程。此外,腦室內注射血紅素並不會改變阿茲海默氏症雙重基因轉殖鼠腦中Aβ的濃度。最後,血質也似乎不會改變Aβ對於人類神經纖維瘤母細胞汹纡SH-SY5Y胝汹所造成的毒性。總結這個研究,血質似乎會促進Aβ寡聚體形成,但對Aβ纖維化卻無顯著的影響。至於血質對Aβ神經毒性的研究,因血質是在Aβ聚集後才加入,因此建議未來血質應加在剛溶解的Aβ中,如此才能研究血質對Aβ的聚集,進而對Aβ神經毒性的影響。

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a complex etiology and pathogenesis. The pivotal histopathologies of the brains of AD patients are the intracellular accumulation of neurofibrillary tangles and the extracellular deposition of amyloid plaques. The formation of amyloid plaque is due to abnormal aggregation of the 40 to 42 amino acids amyloid-β peptide (Aβ) peptides. The汹 aggregated Aβ is neurotoxic; hence, is considered culprit for AD pathogenesis. Recent evidence indicated that the accumulation and aggregation of Aβ is a consequence of abnormal metabolism and/or deceased clearance of Aβ from brain. Therefore, it has been suggested that molecules binding to Aβ may be responsible for the misfolding, clearance, transport and stability of Aβ. Previously, the heme moiety was identified as Aβ binding site of hemoglobin by Western blotting analyses. However, the results observed in Western blot may be an artifact due to the peroxidase activity of heme/Aβ complex. Therefore, one of the specific aims of this study is to validate the effect of heme on Aβ aggregation. Furthermore, the conformation-dependent toxicity of Aβ also render us to investigate the effect of heme on Aβ toxicity. The silver stain results revealed that heme indeed facilitated the Aβ oligomer formation as resolved by SDS-PAGE. However, results obtained from the surface plasmon resonance (SPR) biosensor that is known to monitor protein interactions, indicated heme did not alter the aggregation of Aβ1-40 and Aβ1-42. Transmission electron microscope/negative stain suggested that heme did not inhibit the fibrilization of Aβ. Intraventricular injection of hemoglobin did not change the levels of soluble or insoluble Aβ1-40 or Aβ1-42 in AD double transgenic mice. Finally, addition of heme did not alter the toxicity of already aggregated Aβ. Taken together, heme seems to promote initial Aβ oligomer formation, but does not affect the fibrillar formation of Aβ. For the Aβ toxicity, heme does not influence the toxicity of the already aggregated Aβ. In the future, heme should be added to the freshly dissolved Aβ to study effect of heme-induced Aβ conformation change and related toxicity.

    Abstract in Chinese……………………………...……………………………………Ι Abstract……………………………………………………………………………...Ⅱ Acknowledge…………………………………………...……………………………IV Table of contents……………………………………….…………………………….V List of figure…………………………………………..…………………………….VI List of table…………………………………………..…………………………….VII Introduction……………………………………………….………………………….1 Material and Methods……………………………………..…………………………5 Results……………………………………………………………………………….11 Discussion……………………………………………………………………………14 Figures………………………………………………………...…………………..…18 References…………………………………………………...…….………………...29

    Atamna, H. (2004). Heme, iron, and the mitochondrial decay of ageing. Ageing Res Rev, 3(3), 303-318.
    Atamna, H. (2006). Heme binding to Amyloid-beta peptide: mechanistic role in Alzheimer's disease. J Alzheimers Dis, 10(2-3), 255-266.
    Atamna, H., & Boyle, K. (2006). Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer's disease. Proc Natl Acad Sci U S A, 103(9), 3381-3386.
    Atamna, H., & Frey, W. H., 2nd. (2004). A role for heme in Alzheimer's disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A, 101(30), 11153-11158.
    Atamna, H., & Frey, W. H., 2nd. (2007). Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion, 7(5), 297-310.
    Atamna, H., Killilea, D. W., Killilea, A. N., & Ames, B. N. (2002). Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci U S A, 99(23), 14807-14812.
    Burden, A. E., Wu, C., Dailey, T. A., Busch, J. L., Dhawan, I. K., Rose, J. P., et al. (1999). Human ferrochelatase: crystallization, characterization of the [2Fe-2S] cluster and determination that the enzyme is a homodimer. Biochim Biophys Acta, 1435(1-2), 191-197.
    Bush, A. I. (2003). The metallobiology of Alzheimer's disease. Trends Neurosci, 26(4), 207-214.
    Cannon, M. J., Williams, A. D., Wetzel, R., & Myszka, D. G. (2004). Kinetic analysis of beta-amyloid fibril elongation. Anal Biochem, 328(1), 67-75.
    Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., van Duinen, S., Shelanski, M. L., et al. (1988). Isolation and characterization of amyloid P component from Alzheimer's disease and other types of cerebral amyloidosis. Lab Invest, 58(4), 454-458.
    Cullen, K. M., Kocsi, Z., & Stone, J. (2005). Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab, 25(12), 1656-1667.
    Cullen, K. M., Kocsi, Z., & Stone, J. (2006). Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging, 27(12), 1786-1796.
    Dias, J. S., Macedo, A. L., Ferreira, G. C., Peterson, F. C., Volkman, B. F., & Goodfellow, B. J. (2006). The first structure from the SOUL/HBP family of heme-binding proteins, murine P22HBP. J Biol Chem, 281(42), 31553-31561.
    Eriksson, S., & Elzouki, A. N. (1998). Alpha 1-antitrypsin deficiency. Baillieres Clin Gastroenterol, 12(2), 257-273.
    Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., & Lansbury, P. T., Jr. (1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci U S A, 92(3), 763-767.
    Fawcett, J. R., Bordayo, E. Z., Jackson, K., Liu, H., Peterson, J., Svitak, A., et al. (2002). Inactivation of the human brain muscarinic acetylcholine receptor by oxidative damage catalyzed by a low molecular weight endogenous inhibitor from Alzheimer's brain is prevented by pyrophosphate analogs, bioflavonoids and other antioxidants. Brain Res, 950(1-2), 10-20.
    Fraser, P. E., Nguyen, J. T., McLachlan, D. R., Abraham, C. R., & Kirschner, D. A. (1993). Alpha 1-antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregation in vitro. J Neurochem, 61(1), 298-305.
    Gandy, S. (2005). The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest, 115(5), 1121-1129.
    Hamazaki, H. (1994). Human serum amyloid P component binds to a specific peptide in the presence of calcium. Biochem Biophys Res Commun, 205(2), 1172-1178.
    Hamazaki, H. (1995). Amyloid P component promotes aggregation of Alzheimer's beta-amyloid peptide. Biochem Biophys Res Commun, 211(2), 349-353.
    Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297(5580), 353-356.
    Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 377(3), 528-539.
    Howlett, D., Cutler, P., Heales, S., & Camilleri, P. (1997). Hemin and related porphyrins inhibit beta-amyloid aggregation. FEBS Lett, 417(2), 249-251.
    Hu, W. P., Chang, G. L., Chen, S. J., & Kuo, Y. M. (2006). Kinetic analysis of beta-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing. J Neurosci Methods, 154(1-2), 190-197.
    Kajikawa, H., Ohta, T., Yoshikawa, Y., Funatsu, N., Yamamoto, M., & Someda, K. (1979). Cerebral vasospasm and hemoglobins--clinical and experimental studies. Neurol Med Chir (Tokyo), 19(1), 61-71.
    Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., et al. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300(5618), 486-489.
    Koo, E. H., Sisodia, S. S., Cork, L. C., Unterbeck, A., Bayney, R. M., & Price, D. L. (1990). Differential expression of amyloid precursor protein mRNAs in cases of Alzheimer's disease and in aged nonhuman primates. Neuron, 4(1), 97-104.
    Kuo, Y. M., Emmerling, M. R., Lampert, H. C., Hempelman, S. R., Kokjohn, T. A., Woods, A. S., et al. (1999). High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun, 257(3), 787-791.
    Kuo, Y. M., Emmerling, M. R., Vigo-Pelfrey, C., Kasunic, T. C., Kirkpatrick, J. B., Murdoch, G. H., et al. (1996). Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem, 271(8), 4077-4081.
    Kuo, Y. M., Kokjohn, T. A., Kalback, W., Luehrs, D., Galasko, D. R., Chevallier, N., et al. (2000). Amyloid-beta peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem Biophys Res Commun, 268(3), 750-756.
    Leigh, P. N., Abrahams, S., Al-Chalabi, A., Ampong, M. A., Goldstein, L. H., Johnson, J., et al. (2003). The management of motor neurone disease. J Neurol Neurosurg Psychiatry, 74 Suppl 4, iv32-iv47.
    Letarte, P. B., Lieberman, K., Nagatani, K., Haworth, R. A., Odell, G. B., & Duff, T. A. (1993). Hemin: levels in experimental subarachnoid hematoma and effects on dissociated vascular smooth-muscle cells. J Neurosurg, 79(2), 252-255.
    Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., & Cotman, C. W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A, 90(17), 7951-7955.
    Lorenzo, A., & Yankner, B. A. (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A, 91(25), 12243-12247.
    Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol, 155(3), 853-862.
    Ma, J., Yee, A., Brewer, H. B., Jr., Das, S., & Potter, H. (1994). Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature, 372(6501), 92-94.
    Miguel, R. F., Pollak, A., & Lubec, G. (2005). Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer's and Pick's disease. Brain Res Mol Brain Res, 133(1), 1-5.
    Oyama, F., Shimada, H., Oyama, R., Titani, K., & Ihara, Y. (1993). Beta-amyloid protein precursor and tau mRNA levels versus beta-amyloid plaque and neurofibrillary tangles in the aged human brain. J Neurochem, 60(5), 1658-1664.
    Oyama, R., Yamamoto, H., & Titani, K. (2000). Glutamine synthetase, hemoglobin alpha-chain, and macrophage migration inhibitory factor binding to amyloid beta-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer's disease brain by immunoprecipitation. Biochim Biophys Acta, 1479(1-2), 91-102.
    Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., & Cotman, C. W. (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci, 13(4), 1676-1687.
    Pitschke, M., Prior, R., Haupt, M., & Riesner, D. (1998). Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat Med, 4(7), 832-834.
    Poljak, A., McLean, C. A., Sachdev, P., Brodaty, H., & Smythe, G. A. (2004). Quantification of hemorphins in Alzheimer's disease brains. J Neurosci Res, 75(5), 704-714.
    Rogers, J., Cooper, N. R., Webster, S., Schultz, J., McGeer, P. L., Styren, S. D., et al. (1992). Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A, 89(21), 10016-10020.
    Selkoe, D. J. (2001). Clearing the brain's amyloid cobwebs. Neuron, 32(2), 177-180.
    Snow, A. D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimata, K., Mizutani, A., et al. (1994). An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron, 12(1), 219-234.
    Webster, S., Bonnell, B., & Rogers, J. (1997). Charge-based binding of complement component C1q to the Alzheimer amyloid beta-peptide. Am J Pathol, 150(5), 1531-1536.
    Wu, C. W., Liao, P. C., Yu, L., Wang, S. T., Chen, S. T., Wu, C. M., et al. (2004). Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis, 17(3), 367-377.
    Yankner, B. A. (1996). Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron, 16(5), 921-932.
    Zlokovic, B. V., Martel, C. L., Mackic, J. B., Matsubara, E., Wisniewski, T., McComb, J. G., et al. (1994). Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer's amyloid beta. Biochem Biophys Res Commun, 205(2), 1431-1437.
    Zlokovic, B. V., Martel, C. L., Matsubara, E., McComb, J. G., Zheng, G., McCluskey, R. T., et al. (1996). Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A, 93(9), 4229-4234.

    下載圖示 校內:2009-08-05公開
    校外:2011-08-05公開
    QR CODE