簡易檢索 / 詳目顯示

研究生: 吳汶育
Wu, Wen-Yu
論文名稱: 鍍層鎂鋅合金顯微組織及機械性質與生醫應用特性研究
A Study of Microstructure, Mechanical Properties and Biomedical Application of Coated Mg-Zn Alloy
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 109
中文關鍵詞: 鎂合金陽極氧化降解機械性質生物相容性
外文關鍵詞: Mg alloy, anodic oxidation, degradation, mechanical properties, biocompatibility
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前臨床上多以不鏽鋼及鈦合金作為骨科植入材,但其機械性質與人骨差異甚大,易產生應力遮蔽效應,且患者痊癒後須進行二次手術取出植入物;而鎂合金機械性質與人骨相近,有助於骨組織的復原和再生,且其具有生物可降解性,可避免二次手術帶來的感染風險與醫療成本。然而鎂合金降解過快,存在大量析氫引發周圍組織發炎問題,為當前鎂合金植入材所面臨的最大挑戰,而藉由適當合金元素添加及表面處理,可有效延緩降解並優化機械性質。
    本研究選用ZKX500鎂合金,改良傳統陽極氧化方式對其進行表面處理,於其表面生成磷酸鹽鍍層,並導入雙層表面處理,以磷酸鹽鍍層為基礎再塗覆一層高分子明膠,可以改善鎂合金降解特性。在體外降解實驗結果中,明膠塗層易與基材剝離,反而會加劇材料內部腐蝕,而磷酸鹽鍍層則會與模擬體液反應形成保護層,能有效地延緩鎂合金降解。此外,磷酸鹽鍍層厚度約為800奈米,適合應用在尺寸小、表面結構精度高之醫材。
    為進一步評估降解導致機械性質劣化的程度,將經過陽極氧化的鎂合金浸泡於人工模擬體液後,進行拉伸、衝擊、疲勞等機械性質試驗。在經過四週的浸泡後,拉伸試驗結果顯示,強度及延性雖有衰退的趨勢,但仍優於人骨且符合醫材規範,衝擊韌性則僅有輕微衰退,而耐疲勞性受降解影響較大,但仍能展現出磷酸鹽鍍層有緩解劣化的作用。此外,生物相容性測試結果顯示,磷酸鹽鍍層適合細胞貼附與生長,在生物體內無明顯不良反應。
    藉由陽極氧化方式在鎂合金表面生成磷酸鹽鍍層,能延緩鎂合金降解,減少降解後機械性質的劣化,並改善其生物相容性,且磷酸鹽鍍層及鎂合金可於人體內自行降解並代謝,其降解產物與人體骨骼成分相近,有助於骨骼修復。鎂合金及磷酸鹽鍍層降解特性、機械性質等相關數據可提供臨床應用參考。

    Mg-based implant can be detected by X-ray, which is conducive to postoperative follow-up. Its properties are closer to human bones, and thus stress shielding effect can be avoided. Also, a second surgery is unnecessary due to its biodegradability. However, the high degradation rate is the biggest challenge to Mg-based implants, so surface treatment should be performed. In this study, ZKX500 Mg alloy is used. The non-toxic and eco-friendly anodic oxidation method is adopted to improve corrosion resistance.
    The results show that the anodic coating mainly consisted of Mg3(PO4)2. After anodic oxidation, the coating and ion-exchanged layer form and slow down the degradation. The results of the tensile test and impact test show coated specimens maintain good strength, ductility, and toughness after immersing in SBF. Anodic coating is also an excellent surface for cells to attach and proliferate. In the animal implantation experiment, coated Mg bone screw can support the injured part for at least 3 months.

    中文摘要 I 英文延伸摘要 III 誌謝 XIII 總目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 前言 1 第二章 文獻回顧 3 2-1 生物醫用材料 3 2-1-1 生醫材料的種類 3 2-1-2 骨科植入材的選擇 4 2-2 生醫鎂合金 5 2-2-1 生醫鎂合金的優勢 6 2-2-2 生醫鎂合金的限制 7 2-3 鎂合金元素添加效應 7 2-4 鎂合金腐蝕機制 8 2-5 鎂合金表面處理 10 2-5-1 表面處理方法 10 2-5-2 雙層表面處理 11 2-6 明膠特性及應用 12 2-7 鎂合金拉伸機械性質 13 2-8 鎂合金衝擊韌性 14 2-9 鎂合金疲勞特性 14 2-10 動物試驗 15 2-11 研究目的 16 第三章 實驗方法與步驟 21 3-1 實驗架構 21 3-2 材料表面處理 21 3-2-1 陽極氧化磷酸鹽鍍層 22 3-2-2 明膠塗層 22 3-3 微觀形貌觀察與組成分析 23 3-3-1 表面微觀形貌與元素分析 23 3-3-2 相組成分析 23 3-3-3 橫截面微觀結構與元素分佈 24 3-3-4 化學組成分析 24 3-4 體外降解試驗 24 3-4-1 電化學試驗 25 3-4-2 浸泡試驗 26 3-5 降解後機械性質試驗 27 3-5-1 微硬度試驗 27 3-5-2 拉伸試驗 27 3-5-3 衝擊試驗 28 3-5-4 旋轉疲勞試驗 29 3-6 細胞貼附性試驗 30 3-7 動物試驗 30 第四章 結果與討論 40 4-1 磷酸鹽鍍層特性 40 4-1-1 磷酸鹽鍍層形貌及相組成 40 4-1-2 磷酸鹽鍍層形成機制 41 4-1-3 磷酸鹽鍍層TEM分析 42 4-2 明膠塗層特性 43 4-2-1 明膠交聯反應 43 4-2-2 明膠塗層化學組成分析 44 4-3 體外降解行為探討 44 4-3-1 動電位極化曲線 44 4-3-2 浸泡試驗 45 4-3-3 鎂合金及磷酸鹽鍍層降解機制 46 4-3-4 明膠塗層腐蝕行為 47 4-4 降解前後機械性質探討 48 4-4-1 微硬度試驗 48 4-4-2 拉伸試驗 48 4-4-3 衝擊韌性試驗 49 4-4-4 旋轉疲勞試驗 50 4-5 細胞貼附性探討 51 4-6 動物體內植入試驗 52 4-7 鎂合金表面處理應用特性評估 53 4-7-1 單層表面處理 53 4-7-2 雙層表面處理 53 第五章 結論 102 參考文獻 104

    1. Narayan, R., Biomedical materials. Vol. 1. 2009: Springer.
    2. Chevalier, J. and L. Gremillard, Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society, 2009. 29(7): pp. 1245-1255.
    3. Mano, J. F., Sousa, R. A., Boesel, L. F., Neves, N. M., and Reis, R. L., Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004. 64(6): pp. 789-817.
    4. Zoidis, P., I. Papathanasiou, and G. Polyzois, The use of a modified poly‐ether‐ether‐ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. Journal of Prosthodontics, 2016. 25(7): pp. 580-584.
    5. Hench, L. L., Polak, J. M., Xynos, I. D., and Buttery, L. D. K., Bioactive materials to control cell cycle. Material Research Innovations, 2000. 3(6): pp. 313-323.
    6. Tan, L., Yu, X., Wan, P., and Yang, K., Biodegradable materials for bone repairs: a review. Journal of Materials Science and Technology, 2013. 29(6): pp. 503-513.
    7. Pillai, C.K.S. and C.P. Sharma, Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. Journal of biomaterials applications, 2010. 25(4): pp. 291-366.
    8. Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky Roitman, J., and Schroeder, A., Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 2018. 340: pp. 9-14.
    9. Lee, J. W., Han, H. S., Han, K. J., Park, J., Jeon, H., Ok, M. R., Seok, H. K., Ahn, J. P., Lee, K. E., Lee, D. H., Yang, S. J., Cho, S. Y., Cha, P. R., Kwon, H., Nam, T. H., Han, J. H. L., Rho, H. J., Lee, K. S., Kim, Y. C. and Mantovani, D., Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proceedings of the National Academy of Sciences, 2016. 113(3): pp. 716-721.
    10. Sezer, N., Evis, Z., Kayhan, S. M., Tahmasebifar, A., and Koç, M., Review of magnesium-based biomaterials and their applications. Journal of Magnesium and Alloys, 2018. 6(1): pp. 23-43.
    11. Ren, Y., Zhao, H., Yang, K., and Zhang, Y., Biomechanical compatibility of high strength nickel free stainless steel bone plate under lightweight design. Materials Science and Engineering: C, 2019. 101: pp. 415-422.
    12. Grądzka Dahlke, M., J. Dąbrowski, and B. Dąbrowski, Modification of mechanical properties of sintered implant materials on the base of Co-Cr-Mo alloy. Journal of materials processing technology, 2008. 204(1-3): pp. 199-205.
    13. Wu, S., Liu, X., Yeung, K. W., Guo, H., Li, P., Hu, T., Chung, C. Y., and Chu, P. K., Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 2013. 233: pp. 13-26.
    14. Nagels, J., M. Stokdijk, and P.M. Rozing, Stress shielding and bone resorption in shoulder arthroplasty. Journal of shoulder and elbow surgery, 2003. 12(1): pp. 35-39.
    15. Wang, J. L., Xu, J. K., Hopkins, C., Chow, D. H. K., and Qin, L., Biodegradable magnesium‐based implants in orthopedics - a general review and perspectives. Advanced Science, 2020. 7(8): pp. 1902443.
    16. Meng, Y., Sun, J., Yu, J., Wang, C., and Su, J., Dietary intakes of calcium, iron, magnesium, and potassium elements and the risk of colorectal cancer: a meta-analysis. Biological trace element research, 2019. 189(2): pp. 325-335.
    17. Vormann, J., Magnesium: nutrition and metabolism. Molecular aspects of medicine, 2003. 24(1-3): pp. 27-37.
    18. Watson, R.R., V.R. Preedy, and S. Zibadi, Magnesium in human health and disease. 2012: Springer.
    19. Wang, Y. and J. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta materialia, 2007. 55(3): pp. 897-905.
    20. Song, G., Control of biodegradation of biocompatable magnesium alloys. Corrosion science, 2007. 49(4): pp. 1696-1701.
    21. Binjiang, L., Jian, P., Xiaoshan, T., and Fusheng, P., Effects of Extruding Temperature on Microstructure and Mechanical Properties of Mg-2.0 Zn-0.3 Zr-0.9 Y Alloy. Rare Metal Materials and Engineering, 2013. 42(4): pp. 841-844.
    22. Cai, S., Lei, T., Li, N., and Feng, F., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Materials Science and Engineering: C, 2012. 32(8): pp. 2570-2577.
    23. Okamoto, H., Mg-Zr (magnesium-zirconium). Journal of Phase Equilibria and Diffusion, 2007. 28(3): p. 305.
    24. Sun, M., Wu, G., Wang, W., and Ding, W., Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy. Materials Science and Engineering: A, 2009. 523(1-2): pp. 145-151.
    25. Villegas Armenta, L., R. Drew, and M. Pekguleryuz, The ignition behavior of Mg-Ca binary alloys: the role of heating rate. Oxidation of Metals, 2020. 93(5): pp. 545-558.
    26. Yin, P., Li, N. F., Lei, T., Liu, L., and Ouyang, C., Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys. Journal of Materials Science: Materials in Medicine, 2013. 24(6): pp. 1365-1373.
    27. Song, G.L. and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): pp. 11-33.
    28. Li, Z., Peng, Z., Qi, K., Li, H., Qiu, Y., and Guo, X., Microstructure and Corrosion of cast magnesium alloy ZK60 in NaCl solution. Materials, 2020. 13(17): p. 3833.
    29. Jin, W., Wang, G., Lin, Z., Feng, H., Li, W., Peng, X., Qasim, A. M., and Chu, P. K., Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. Corrosion Science, 2017. 114: pp. 45-56.
    30. Zeng, R. C., Zhang, J., Huang, W. J., Dietzel, W., Kainer, K. U., Blawert, C., and Wei, K. E., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: pp. 763-771.
    31. Jamesh, M. I., Wu, G., Zhao, Y., McKenzie, D. R., Bilek, M. M., and Chu, P. K., Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids. Corrosion science, 2014. 82: pp. 7-26.
    32. Chen, X., N. Birbilis, and T. Abbott, Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion, 2011. 67(3): pp. 1-16.
    33. Li, K., Wang, B., Yan, B., and Lu, W., Microstructure, invitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment. Journal of Biomaterials Applications, 2013. 28(3): pp. 375-384.
    34. Gray, J. and B. Luan, Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds, 2002. 336(1-2): pp. 88-113.
    35. 黃嫈庭,熱壓延與表面處理對醫療級可降解型鎂鋅合金機械性質與生醫應用特性研究,國立成功大學材料科學及工程學系,碩士論文,民國110年。
    36. Wang, Z. X., Xu, L., Zhang, J. W., Ye, F., Lv, W. G., Xu, C., Lu, S., and Yang, J., Preparation and Degradation Behavior of Composite Bio-Coating on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation and Electrophoresis Deposition. Frontiers in Materials, 2020. 7: p. 14.
    37. Uddin, M.S., C. Hall, and P. Murphy, Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Science and Technology of Advanced Materials, 2015. 16(5): p. 24.
    38. Yu, J.I., Mg Alloy Surface Treatment. Magnesium Alloys, ed. M. Aliofkhazraei. 2017, Rijeka: Intech Europe. pp.75-90.
    39. Lee, J. L., Jian, S. Y., Kuo, K. N., You, J. L., and Lai, Y. T., Effect of Surface Properties on Corrosion Resistance of ZK60 Mg Alloy Microarc Oxidation Coating. Ieee Transactions on Plasma Science, 2019. 47(2): pp. 1172-1180.
    40. Li, B., Y. Han, and K. Qi, Formation mechanism, degradation behavior, and cytocompatibility of a nanorod-shaped HA and pore-sealed MgO bilayer coating on magnesium. ACS applied materials and interfaces, 2014. 6(20): pp. 18258-18274.
    41. Akram, M., N. Arshad, and A. Braem, Fabrication of corrosion-resistant chitosan-gelatin-bioactive glass-ZnO/CeO2 hybrid coating on magnesium ZK60 alloy by AC-EPD. Journal of Taibah University for Science, 2021. 15(1): pp. 312-320.
    42. Haug, I.J. and K.I. Draget, 6 - Gelatin, in Handbook of Hydrocolloids (Second Edition), G.O. Phillips and P.A. Williams, Editors. 2009, Woodhead Publishing. pp. 142-163.
    43. Veis, A., The macromolecular chemistry of gelatin. 1964.
    44. Su, K. and C. Wang, Recent advances in the use of gelatin in biomedical research. Biotechnology letters, 2015. 37(11): pp. 2139-2145.
    45. Damink, L. O., Dijkstra, P. J., Van Luyn, M. J. A., Van Wachem, P. B., Nieuwenhuis, P., and Feijen, J., Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 1996. 17(8): pp. 765-773.
    46. Sung, H. W., Huang, D. M., Chang, W. H., Huang, R. N., and Hsu, J. C., Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 1999. 46(4): pp. 520-530.
    47. Chen, Y., Xu, Z., Smith, C., and Sankar, J., Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia, 2014. 10(11): pp. 4561-4573.
    48. 林彥伶,可降解型鎂鋅合金機械性質與生醫應用特性研究,國立成功大學材料科學及工程學系,碩士論文,民國108年。
    49. Ma, C., Liu, M., Wu, G., Ding, W., and Zhu, Y., Tensile properties of extruded ZK60-RE alloys. Materials Science and Engineering: A, 2003. 349(1-2): pp. 207-212.
    50. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 9. 2018: Wiley New York.
    51. Huang, Z. H., Qi, W. J., and Jing, X. U., Effect of microstructure on impact toughness of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2012. 22(10): pp. 2334-2342.
    52. Liao, J., Hotta, M., Kaneko, K., and Kondoh, K., Enhanced impact toughness of magnesium alloy by grain refinement. Scripta Materialia, 2009. 61(2): pp. 208-211.
    53. Eliezer, A., Gutman, E. M., Abramov, E., and Unigovski, Y., Corrosion fatigue of die-cast and extruded magnesium alloys. Journal of Light Metals, 2001. 1(3): pp. 179-186.
    54. He, C., Liu, Y., Li, J., Yang, K., Wang, Q., and Chen, Q., Very-high-cycle fatigue crack initiation and propagation behaviours of magnesium alloy ZK60. Materials Science and Technology, 2018. 34(6): pp. 639-647.
    55. Vinogradov, A., D. Orlov, and Y. Estrin, Improvement of fatigue strength of a Mg-Zn-Zr alloy by integrated extrusion and equal-channel angular pressing. Scripta Materialia, 2012. 67(2): pp. 209-212.
    56. Chen, Y. T., Hung, F. Y., Lin, Y. L., and Lin, C. Y., Biodegradation ZK50 magnesium alloy compression screws: Mechanical properties, biodegradable characteristics and implant test. Journal of Orthopaedic Science, 2020. 25(6): pp. 1107-1115.
    57. Ward, A. G., The chemical structure and physical properties of gelatin. The Journal of Photographic Science, 1955. 3(2): pp. 60-67.
    58. Oyane, A., Kim, H. M., Furuya, T., Kokubo, T., Miyazaki, T., and Nakamura, T., Preparation and assessment of revised simulated body fluids. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2003. 65(2): pp. 188-195.
    59. Imani, R., M. Rafienia, and S. Hojjati Emami, Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study. Bio-medical materials and engineering, 2013. 23(3): pp. 211-224.
    60. Currey, J.D., The mechanical adaptations of bones, in The Mechanical Adaptations of Bones. Journal of biomechanics, 2014. 36(10): pp.1487-1495.

    無法下載圖示 校內:2027-06-27公開
    校外:2027-06-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE