簡易檢索 / 詳目顯示

研究生: 黃建程
Huang, Chien-Cheng
論文名稱: 台灣全國1999年至2012年一氧化碳中毒的流行病學與併發症研究
Carbon monoxide poisoning: epidemiology and subsequent complications between 1999 and 2012 in Taiwan
指導教授: 郭浩然
Guo, How-Ran
學位類別: 博士
Doctor
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 147
中文關鍵詞: 一氧化碳中毒糖尿病高壓氧治療甲狀腺低下死亡心肌受損神經學後遺症臺灣
外文關鍵詞: carbon monoxide poisoning, diabetes, hyperbaric oxygen therapy, hypothyroidism, mortality, myocardial injury, neurological sequelae, Taiwan
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:一氧化碳中毒是公共衛生上一個很重要的問題,但是很多相關議題在目前的文獻裡仍未被釐清。我們進行一系列研究以探討:(1)臺灣自1999年至2012年全國一氧化碳中毒的流行病學,(2)一氧化碳中毒與心肌受損、糖尿病與甲狀腺低下的關聯性,(3)高壓氧治療對一氧化碳中毒後的死亡率、心肌受損及神經學後遺症的功效,(4)一氧化碳中毒後發生神經學後遺症的預測因子。
    方法:我們採用了臺灣健保資料庫裡的二個子資料庫「全國中毒資料庫」與「2000年百萬歸人檔」進行資料分析,首先以描述性統計來呈現臺灣自1999年至2012年全國一氧化碳中毒的流行病學資料,其次以世代研究設計用存活分析比較一氧化碳中毒患者與對照族群發生心肌受損、糖尿病與甲狀腺低下的風險,最後再以一氧化碳中毒患者為對象探討高壓氧治療是否可減少一氧化碳中毒後的死亡率、心肌受損及神經學後遺症的風險。另外,我們在南部某醫學中心進行一個回溯性病例對照研究,以邏輯斯回歸分析比較一氧化碳中毒發生與未發生神經學後遺症的患者,探討其獨立預測因子。
    結果:我們分析臺灣全國流行病學資料發現,大部分一氧化碳中毒病人年齡在50歲以下、平均是36歲,男女比例差不多,中等收入最多,約三分之一有精神疾病,而20.4%是自殺所致。一氧化碳中毒後會增加心肌受損的風險,但是主要是發生在急性期一個月內。一氧化碳中毒也會增加後罹患糖尿病的風險,尤其是在年輕(< 35歲)、高齡(≥ 65歲)、女性以及鬱血性心衰竭、甲狀腺亢進以及多囊卵巢綜合症的患者。一氧化碳中毒還會增加之後發生甲狀腺低下的風險,尤其是糖尿病、高血脂以及精神疾病的患者族群。高壓氧治療可減少短期及長期死亡率,尤其是在20歲以下及急性呼吸衰竭病人的功效更明顯。高壓氧治療也有減少心肌受損發生率的趨勢,但做高壓氧治療的病人中神經學後遺症的發生比例增加。在醫學中心的病例對照研究中,我們收案371位一氧化碳中毒患者,經過單變項與多變項邏輯斯迴歸分析後,發現「一氧化碳中毒暴露時間超過5小時」與「有高血壓病史」是預測神經學後遺症的獨立因子。
    結論:本系列研究結果呈現了整個臺灣自1999年至2012年一氧化碳中毒的流行病學資料,另發現了一氧化碳中毒後心肌受損、糖尿病與甲狀腺低下的風險會上升,而高壓氧治療可減少死亡與心肌受損的風險,但可能因為增加存活率而導致神經學後遺症的風險增加。此外,本系列研究找到了二個神經學後遺症的獨立預測因子。這些結果可提供我們未來治療及預防一氧化碳中毒後遺症的重要參考,但仍須要後續研究去釐清其背後的機制。

    Objectives: Carbon monoxide poisoning (COP) is an important problem in public health; however, many related issues remain unclear in the literature. We conducted a series of studies to investigate the follows: (1) epidemiology of COP between 1999 and 2012 in Taiwan; (2) associations of COP with myocardial injury, diabetes, and hypothyroidism; (3) effects of hyperbaric oxygen therapy (HBOT) on mortality, myocardial injury, and neurological sequelae (NS) after COP; and (4) independent predictors for the NS of COP.
    Methods: We analyzed data from the Nationwide Poisoning Database (NPD) and Longitudinal Health Insurance Database 2000 (LHID 2000), two sub-datasets from Taiwan National Health Insurance Research Database (NHIRD). We first studied the epidemiology of COP between 1999 and 2012 in Taiwan using descriptive analysis. And then, through a cohort study design, we compared the incidence of myocardial injury, diabetes, and hypothyroidism between patients of COP and reference patients groups using survival analysis. Finally, we evaluated whether HBOT can reduce mortality, myocardial injury, and NS. In addition, we conducted a retrospective hospital-based case-control study in a tertiary medical center in Southern Taiwan to identify the independent predictors for NS using logistic regression analysis.
    Results: The nationwide epidemiological data in Taiwan showed that the COP patients were mostly less than 50 years old (with a mean age of 36.0 years), equally distributed in the two sexes, mostly in the middle income group, more likely to have had mental disorders (nearly one-third), and frequently (20.4%) resulted from suicide attempts. COP increased the risk of myocardial injury, but the increased risk was mainly observed in the first month after COP. COP increased the risk of diabetes, especially in participants with a younger (< 35 years) or older (≥ 65 years) age, female sex, and comorbidities of congestive heart failure, hyperthyroidism, and polycystic ovary syndrome. COP increased the risk of developing hypothyroidism, especially in participants with diabetes, hyperlipidemia, and mental disorders. HBOT was associated with lower short- and long-term mortalities in COP participants, especially in those who were less than 20 years old and those with acute respiratory failure. HBOT had a trend of reducing the risk of subsequent myocardial injury. The risk of developing NS was higher in the COP participants who received HBOT than in those who did not. A total of 371 COP participants were recruited into the hospital-based case-control study. After uni-variate and multi-variate logistic regression analyses, a duration of CO exposure > 5 hours and a past history of hypertension were independent predictors for NS.
    Conclusions: These studies showed a whole picture of COP between 1999 and 2012 in Taiwan and found increased risks of subsequent myocardial injury, diabetes, and hypothyroidism after COP; a positive effect of HBOT on reducing mortality and myocardial injury after COP; and an increased risk of developing NS in COP patients who received HBOT, most likely due to the better survival. In addition, two independent predictors for NS were found. The results provide important references for the treatment and prevention of subsequent complications following COP; however, further studies are warranted to clarify the underlying mechanisms.

    Certification………………………………………………………………………….……...I Chinese abstract…………………………………………………………………………….II Abstract……………………………………………………………………………………IV Acknowledgement…………………………………………………………………………VI Contents…………………………………………………………………………………..VII List of tables……………………………………………………………………………….XI List of figures…………………………………………………………………………….XIV Chapter 1. Epidemiology……………………………………………………………………1 1.1 Background…………………………………………………………………………..1 1.2 Objective: demographic and clinical characteristics of COP between 1999 and 2012 in Taiwan……………………………………………………………………..............2 1.3 Materials and Methods……………………………………………………………….2 1.3.1 Data sources…………………………………………………………………...2 1.3.2 Identification of COP participants and definitions of variables……………….3 1.3.3 Ethics statement………………………………………………………………..5 1.3.4 Data analysis…………………………………………………………………...5 1.4 Results…………………………………………………………..……………………5 1.5 Discussion……………………………………………………………………………6 1.6 Conclusions…………………………………………………………………………..9 Chapter 2. Subsequent complications after COP………………………………………….10 2.1 Background…………………………………………………………………………10 2.2 Objectives…………………………………………………………………………...11 2.3 Materials and Methods……………………………………………………………...11 2.3.1 Association between COP and myocardial injury……………………………...11 2.3.1.1 Data sources………………………………………………………………..11 2.3.1.2 Definitions, variables, and outcomes………………………………………11 2.3.1.3 Comparison of the risk of myocardial injury between COP and non-COP participants………………………………………………………………...12 2.3.1.4 Ethics statement……………………………………………………………12 2.3.1.5 Statistical analyses…………………………………………………………12 2.3.2 Association between COP and diabetes………………………………………..13 2.3.2.1 Data source………………………………………………………………...13 2.3.2.2 Definition of study cohort (COP participants) and comparison cohort (non- COP participants) and variables…………………………………………...13 2.3.2.3 Comparison of the risk for diabetes between the study and comparison cohorts……………………………………………………………………..14 2.3.2.4 Ethics statement……………………………………………………………14 2.3.2.5 Data analysis……………………………………………………………….14 2.3.3 Association between COP and hypothyroidism………………………………..15 2.3.3.1 Data source………………………………………………………………...15 2.3.3.2 Identification of COP and non-COP participants………………………….15 2.3.3.3 Definitions of included variables………………………………………….15 2.3.3.4 Ethics statement……………………………………………………………16 2.3.3.5 Data analysis……………………………………………………………….16 2.4 Results………………………………………………………………………………16 2.4.1 Association between COP and myocardial injury……………………………...16 2.4.2 Association between COP and diabetes………………………………………..17 2.4.3 Association between COP and hypothyroidism………………………………..18 2.5 Discussion…………………………………………………………………………..19 2.5.1 Association between COP and myocardial injury……………………………...19 2.5.2 Association between COP and diabetes………………………………………..22 2.5.3 Association between COP and hypothyroidism………………………………..24 2.6 Conclusions…………………………………………………………………………26 2.6.1 Association between COP and myocardial injury……………………………..26 2.6.2 Association between COP and diabetes………………………………………..27 2.6.3 Association between COP and hypothyroidism………………………………..27 Chapter 3. Effect of HBOT on the complications after COP………………...……………28 3.1 Background…………………………………………………………………………28 3.2 Objectives…………………………………………………………………………...29 3.3 Materials and Methods……………………………………………………………...29 3.3.1 Effect of HBOT on mortality………………….…………..…………………...29 3.3.1.1 Data source and identification of participants with COP and definitions of variables……………………………………………………………………29 3.3.1.2 Mortality risk and independent mortality predictors………………………30 3.3.1.3 Ethics statement……………………………………………………………30 3.3.1.4 Data analysis……………………………………………………………….30 3.3.2 Effect of HBOT on myocardial injury……………...….……………………….31 3.3.2.1 Data sources, identification of participants, and definitions of variables…31 3.3.2.2 Comparison of the risk for myocardial injury between participants with and without HBOT……………………………………………………………..31 3.3.2.3 Ethics statement……………………………………………………………32 3.3.2.4 Statistical analysis…………………………………………………………32 3.3.3 Effect of HBOT on NS………………….……………………………………...32 3.3.3.1 Data source and identification of participants with COP………………….32 3.3.3.2 Definitions of variables……………………………………………………33 3.3.3.3 Comparison of the risk for NS between the two cohorts and independent predictors for NS…………………………………………………………..33 3.3.3.4 Ethics statement……………………………………………………………34 3.3.3.5 Data analysis……………………………………………………………….34 3.4 Results………………………………………………………………………………34 3.4.1 Effect of HBOT on mortality………..……………….………………………...34 3.4.2 Effect of HBOT on myocardial injury…..………………….………………….36 3.4.3 Effect of HBOT on NS……..……………..……………………………………37 3.5 Discussion…………………………………………………………………………..38 3.5.1 Effect of HBOT on mortality………………….………………..……………...38 3.5.2 Effect of HBOT on myocardial injury………………….………..…………….41 3.5.3 Effect of HBOT on NS……………..…….……………………………………43 3.6 Conclusions…………………………………………………………………………45 3.6.1 Effect of HBOT on mortality…….….....………..……………………………..45 3.6.2 Effect of HBOT on myocardial injury……………..…..……………………….45 3.6.3 Effect of HBOT on NS…………..……….…………………………………….46 Chapter 4. Independent predictors for NS…………………………………………………47 4.1 Background and objective…………………………………………………………..47 4.2 Materials and Methods……………………………………………………………...47 4.2.1 Study design, setting, and enrollment of participants………………………….47 4.2.2 Data collection………………………………………………………………….48 4.2.3 Definition of variables………………………………………………………….48 4.2.4 Definition of primary outcome…………………………………………………48 4.2.5 Ethics statement………………………………………………………………...48 4.2.6 Data analysis……………………………………………………………………49 4.3 Results………………………………………………………………………………49 4.4 Discussion…………………………………………………………………………..50 4.5 Conclusions…………………………………………………………………………52 Chapter 5. Final conclusions………………………………………………………………53 References………….……………………………………………………………………...55 Tables………………………………………………………………………………………65 Figures……………………………………………………………………………………127

    1. Anand SS, Islam S, Rosengren A, et al.; INTERHEART Investigators. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J 29: 932−940, 2008.
    2. Balzan MV, Agius G, Galea Debono A. Carbon monoxide poisoning: easy to treat but difficult to recognise. Postgrad Med J 72: 470−473, 1996.
    3. Bateman DN. Carbon Monoxide. Medicine 31: 41–42, 2003.
    4. Bensenor IM, Olmos RD, Lotufo PA. Hypothyroidism in the elderly: diagnosis and management. Clin Interv Aging 7: 97–111, 2012.
    5. Biessels GJ, Kappelle LJ. The treatment of diabetes after an acute ischaemic stroke. Eur Neurol 7: 169–173, 2012.
    6. Boron WF, Boulapep EL. Medical Physiology (2nd ed.). Philadelphia: Saunders. p. 1052. ISBN 978-1-4377-1753-2, 2012.
    7. Brown SD, Piantadosi CA. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J Appl Physiol 68: 604–610, 1990.
    8. Brown SD, Piantadosi CA. Recovery of energy metabolism in rat brain after carbon monoxide hypoxia. J Clin Invest 89: 666–672, 1992.
    9. Brown SD, Piantadosi CA. Reversal of carbon monoxide–cytochrome c oxidase binding by hyperbaric oxygen in vivo. Adv Exp Med Biol 248: 747–754, 1989.
    10. Buckley NA, Isbister GK, Stokes B, et al. Hyperbaric oxygen for carbon monoxide poisoning: a systematic review and critical analysis of the evidence. Toxicol Rev 24: 75–92, 2005.
    11. Buckley NA, Juurlink DN, Isbister G, et al. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev 4: CD002041, 2011.
    12. Centers for Disease Control and Prevention (CDC). Unintentional, non-fire-related, carbon monoxide exposures---United States, 2001--2003. MMWR Morb Mortal Wkly Rep 54: 36–39, 2005.
    13. Centers for Disease Control and Prevention (CDC). Carbon Monoxide poisoning fact sheet. http://www.cdc.gov/co/pdfs/faqs.pdf (last accessed on 8 March 2016).
    14. Chang SS, Gunnell D, Wheeler BW, Yip P, Sterne JA. The evolution of the epidemic of charcoal-burning suicide in Taiwan: a spatial and temporal analysis. PLoS Med 7: e1000212, 2010.
    15. Chang YC, Lee HY, Huang JL, et al. Risk Factors and Outcome Analysis in Children with Carbon Monoxide Poisoning. Pediatr Neonatol 58: 171−177, 2017.
    16. Chen YG, Lin TY, Dai MS, et al. Risk of Peripheral Artery Disease in Patients With Carbon Monoxide Poisoning: A Population-Based Retrospective Cohort Study. Medicine (Baltimore) 94: e1608, 2015.
    17. Choi IS. Carbon monoxide poisoning: systemic manifestations and complications. J Korean Med Sci 16: 253–261, 2001.
    18. Chung WS, Lin CL, Kao CH. Carbon monoxide poisoning and risk of deep vein thrombosis and pulmonary embolism: a nationwide retrospective cohort study. J Epidemiol Community Health 69: 557–562, 2015.
    19. Collins TC, Petersen NJ, Menke TJ, et al. Short-term, intermediate-term, and long-term mortality in patients hospitalized for stroke. J Clin Epidemio l56: 81–87, 2003.
    20. Davis JD, Tremont G. Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol 32: 49–65, 2007.
    21. De Flines J, Scheen AJ. Congestive heart failure and diabetes mellitus: an intricated relationship. Rev Med Liege 62: 112–117, 2007.
    22. Duntas LH. Thyroid disease and lipids. Thyroid 12: 287–93, 2002.
    23. Dziewierz A, Ciszowski K, Gawlikowski T, et al. Primary angioplasty in patient with ST-segment elevation myocardial infarction in the setting of intentional carbon monoxide poisoning. J Emerg Med 45: 831−834, 2013.
    24. Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med 339: 1603–1608, 1998.
    25. Gandini C, Castoldi AF, Candura SM, et al. Carbon monoxide cardiotoxicity. J Toxicol Clin Toxicol 39: 35–44, 2001.
    26. Garg J, Krishnamoorthy P, Palaniswamy C, et al. Cardiovascular Abnormalities in Carbon Monoxide Poisoning. Am J Ther 2014. [Epub ahead of print]
    27. Gomes DA, Giusti-Paiva A, Ventura RR, et al. Carbon monoxide and nitric oxide modulate hyperosmolality-induced oxytocin secretion by the hypothalamus in vitro. Biosci Rep 30: 351–357, 2010.
    28. Hampson NB, Hauff NM, Rudd RA. Increased long-term mortality among survivors of acute carbon monoxide poisoning. Crit Care Med 37: 1941–1947, 2009.
    29. Hampson NB, Piantadosi CA, Thom SR, et al. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am J Respir Crit Care Med 186: 1095–1101, 2012.
    30. Hampson NB, Piantadosi CA, Thom SR, et al. Reply: carbon monoxide treatment guidelines must acknowledge the limitations of the existing evidence. Am J Respir Crit Care Med 187: 1390–1391, 2013.
    31. Hampson NB, Weaver LK. Carbon monoxide poisoning: a new incidence for an old disease. Undersea Hyperb Med 34:163−168, 2007.
    32. Health Promotion Adminstration, Ministry of Health and Welfare, Taiwan. Health Indicators 123. https://olap.hpa.gov.tw/en_US/Index.aspx?menu=-1&vid=1 (last accessed on April 30, 2017).
    33. Heckerling PS. Occult carbon monoxide poisoning: a cause of winter headache. Am J Emerg Med 5: 201–204, 1987.
    34. Henry CR, Satran D, Lindgren B, et al. Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. JAMA 295: 398−402, 2006.
    35. Henry JA. Hyperbaric therapy for carbon monoxide poisoning: to treat or not to treat, that is the question. Toxicol Rev 24: 149–150; discussion 159–160, 2005.
    36. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 87: 489–499, 2002.
    37. Hu H, Pan X, Wan Y, et al. Factors affecting the prognosis of patients with delayed encephalopathy after acute carbon monoxide poisoning. Am J Emerg Med 29: 261–264, 2011.
    38. Huang CC, Chung MH, Weng SF, et al. Long-term prognosis of patients with carbon monoxide poisoning: a nationwide cohort study. PLoS One 9: e105503, 2014.
    39. Huang CC, Ho CH, Chen YC, et al. Hyperbaric oxygen therapy is associated with lower short- and long-term mortality in patients with carbon monoxide poisoning. Chest. 2017 Apr 17. pii: S0012-3692(17)30723-7. doi: 10.1016/j.chest.2017.03.049. [Epub ahead of print]
    40. Huh GY, Jo GR, Kim KH, et al. Imitative suicide by burning charcoal in the southeastern region of Korea: the influence of mass media reporting. Leg Med (Tokyo) 11 Suppl 1: S563–564, 2009.
    41. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol 26: 563–565, 1999.
    42. Jung YS, Lee JS, Min YG, et al. Carbon monoxide-induced cardiomyopathy. Circ J 78: 1437–1444, 2014.
    43. Juurlink DN, Buckley NA, Stanbrook MB, et al. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev 25: CD002041, 2005.
    44. Kalay N, Ozdogru I, Cetinkaya Y, et al. Cardiovascular effects of carbon monoxide poisoning. Am J Cardiol 99: 322–324, 2007.
    45. Ku CH, Hung HM, Leong WC, et al. Outcome of patients with carbon monoxide poisoning at a Far-East poison center. PLoS One 10: e0118995, 2015.
    46. Latham E, Hare MA, Neumeister M. Hyperbaric oxygen therapy. http://emedicine.medscape.com/article/1464149-overview#aw2aab6b6 (last accessed on April 29, 2017).
    47. Lee CC, Lee MT, Chen YS, et al. Risk of aortic dissection and aortic aneurysm in patients taking oral fluoroquinolone. JAMA Intern Med 175: 1839–1847, 2015.
    48. Lee FY, Chen WK, Lin CL, et al. Carbon monoxide poisoning and subsequent cardiovascular disease risk: a nationwide population-based cohort study. Medicine (Baltimore) 94: e624, 2015.
    49. Legro RS, Kunselman AR, Dodson WC, et al. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84: 165–169, 1999.
    50. Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc 104: 157–163, 2005.
    51. Lin CW, Chen WK, Hung DZ, et al. Association between ischemic stroke and carbon monoxide poisoning: A population-based retrospective cohort analysis. Eur J Intern Med 29: 65–70, 2015.
    52. Lippi G, Rastelli G, Meschi T, et al. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem 45: 1278−1285, 2012.
    53. Liu KY, Beautrais A, Caine E, et al. Charcoal burning suicides in Hong Kong and urban Taiwan: an illustration of the impact of a novel suicide method on overall regional rates. J Epidemiol Community Health 61: 248–253, 2007.
    54. Liu KY, Beautrais A, Caine E, et al. Charcoal burning suicides in Hong Kong and urban Taiwan: an illustration of the impact of a novel suicide method on overall regional rates. J Epidemiol Community Health 61: 248–253, 2007.
    55. Lu MC, Chang SC, Huang KY, et al. Higher Risk of Thyroid Disorders in Young Patients with Type 1 Diabetes: A 12-Year Nationwide, Population-Based, Retrospective Cohort Study. PLoS One 11: e0152168, 2016.
    56. Luitse MJ, Biessels GJ, Rutten GE, et al. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11: 261–271, 2012.
    57. Marieb EN, Hoehn KN. Anatomy & physiology. Glenview, IL: Pearson Education, Inc. ISBN 978-0321861580, 2014.
    58. Marius-Nunez AL. Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide. Chest 97: 491–494, 1990.
    59. Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22: 241–251, 2007.
    60. Mobbs CV, Isoda F, Makimura H, et al. Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis. Physiol Behav 85: 3–23, 2005.
    61. Mounien L, Marty N, Tarussio D, et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J 24: 1747–1758, 2010.
    62. Mumma BE, Diercks DB, Holmes JF. Availability and utilization of cardiac resuscitation centers. West J Emerg Med 15: 758–763, 2014.
    63. National Fire Agency, Ministry of the Interior. http://www.nfa.gov.tw/main/Unit.aspx?ID=&MenuID=500&ListID=315 (last accessed on August 3, 2016).
    64. National Health Insurance Administration (NHIA), Ministry of Health and Welfare, Taiwan, R.O.C. National Health Insurance Annual Report 2014-2015, 2014.
    65. National Health Insurance Administration (NHIA), Ministry of Health and Welfare. Classification of diseases. http://www.nhi.gov.tw/webdata/webdata.aspx?menu=18&menu_id=703&webdata_id=1008 (last accessed on 27 March 2017).
    66. National Health Insurance Research Database (NHIRD). Coding book. http://nhird.nhri.org.tw/date_02.html (last accessed on 27March 2017).
    67. Olson KR. Carbon monoxide poisoning: mechanisms, presentation, and controversies in management. J Emerg Med 1: 233–243, 1984.
    68. Omaye ST. Metabolic modulation of carbon monoxide toxicity. Toxicology 180: 139–150, 2002.
    69. Orio F, Muscogiuri G, Nese C, et al. Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol S0301-2115: 30874–30880, 2016.
    70. Pan YJ, Liao SC, Lee MB. Suicide by charcoal burning in Taiwan, 1995-2006. J Affect Disord 120: 254–257, 2010.
    71. Piantadosi CA, Zhang J, Levin ED, et al. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 147: 103–114, 1997.
    72. Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. Journal of the Neurological Sciences 262: 122–130, 2007.
    73. Raub JA, Mathieu-Nolf M, Hampson NB, et al. Carbon monoxide poisoning--a public health perspective. Toxicology 145: 1–14, 2000.
    74. Rodkey FL, Hill TA, Pitts LL, et al. Spectrophotometric measurement of carboxyhemoglobin and methemoglobin in blood. Clin Chem 25: 1388–1393, 1979.
    75. Samuels MH. Psychiatric and cognitive manifestations of hypothyroidism. Curr Opin Endocrinol Diabetes Obes 21: 377–383, 2014.
    76. Sarnak MJ, Levey AS, Schoolwerth AC, et al.; American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108: 2154−2169, 2003.
    77. Satran D, Henry CR, Adkinson C, et al. Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J Am Coll Cardiol 45: 1513–1516, 2005.
    78. Seeley RJ, Sandoval DA. Targeting the brain as a cure for type 2 diabetes. Nat Med 22: 709–711, 2016.
    79. Shen CH, Lin JY, Pan KT, et al. Predicting poor outcome in patients with intentional carbon monoxide poisoning and acute respiratory failure: A retrospective study. J Med Sci 35: 105−110, 2015.
    80. Shie HG, Li CY. Population-based case-control study of risk factors for unintentional mortality from carbon monoxide poisoning in Taiwan. Inhal Toxicol 19: 905–912, 2007.
    81. Sircar K, Clower J, Shin MK, et al. Carbon monoxide poisoning deaths in the United States, 1999 to 2012. Am J Emerg Med 33: 1140–1145, 2015.
    82. Sokal JA. The effect of exposure duration on the blood level of glucose, pyruvate and lactate in acute carbon monoxide intoxication in man. J Appl Toxicol 5: 395–397, 1985.
    83. Sterling DL, Thornton JD, Swafford A, et al. Hyperbaric oxygen limits infarct size in ischemic rabbit myocardium in vivo. Circulation 88(4 Pt 1): 1931−1936, 1993.
    84. Sward DG, Sethuraman KN, Wong JS, Rosenthal RE. Carbon monoxide and ST-elevation myocardial infarction: case reports. Undersea Hyperb Med 43: 63−69, 2016.
    85. Szponar J, Kołodziej M, Majewska M, et al. Myocardial injury in the course of carbon monoxide poisoning. Przegl Lek 69: 528−534, 2012.
    86. Taiwan Ministry of Health and Welfare. Analysis of sex difference in disease. http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=12117&s=1 (last accessed on March 30, 2017).
    87. Taiwan suicide prevention center. Objectives. http://tspc.tw/tspc/portal/center/index.jsp?sno=93 (last accessed on August 3, 2016).
    88. Teng W, Shan Z, Patil-Sisodia K, et al. Hypothyroidism in pregnancy. Lancet Diabetes Endocrinol 1: 228–237, 2013.
    89. Thom SR, Bhopale VM, Fisher D, et al. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci USA 101: 13660–13665, 2004.
    90. Thom SR, Bhopale VM, Fisher D. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicol Appl Pharmacol 213: 152–159, 2006.
    91. Thom SR, Bhopale VM, Han ST, et al. Intravascular neutrophil activation due to carbon monoxide poisoning. Am J Respir Crit Care Med 74: 1239–1248, 2006.
    92. Thom SR, Bhopale VM, Milovanova TM, et al. Plasma biomarkers in carbon monoxide poisoning. Clin Toxicol (Phila) 48: 47–56, 2010.
    93. Thom SR, Mendiguren I, Hardy K, et al. Inhibition of human neutrophil beta2-integrin-dependent adherence by hyperbaric O2. Am J Physiol 272(3 Pt 1): C770−C777, 1997.
    94. Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 25: 474–480, 1995.
    95. Thom SR. Antagonism of carbon monoxide–mediated brain lipid peroxidation by hyperbaric oxygen. Toxicol Appl Pharmacol 105: 340–344, 1990.
    96. Thom SR. Carbon monoxide pathophysiology and treatment. In: Neuman TS, Thom SR, editors. Physiology and medicine of hyperbaric oxygen therapy. Philadelphia: Saunders Elsevier; 2008. pp. 321–347.
    97. Thom SR. Hyperbaric-oxygen therapy for acute carbon monoxide poisoning. N Engl J Med 347: 1105–1106, 2002.
    98. Thomas MP, Brown LA, Sponseller DR, Williamson SE, Diaz JA, Guyton DP. Myocardial infarct size reduction by the synergistic effect of hyperbaric oxygen and recombinant tissue plasminogen activator. Am Heart J 120: 791−800, 1990.
    99. Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 13 Suppl 1: 82–88, 2011.
    100. Thorens B. Central control of glucose homeostasis: the brain--endocrine pancreas axis. Diabetes Metab 36 Suppl 3: S45–49, 2010.
    101. Thorens B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int J Obes (Lond) 32(Suppl 6): S62–S71, 2008.
    102. Tritapepe L, Macchiarelli G, Rocco M, et al. Functional and ultrastructural evidence of myocardial stunning after acute carbon monoxide poisoning. Crit Care Med 26: 797−801, 1998.
    103. United States Environmental Protection Agency (USEPA). An Introduction to Indoor Air Quality (IAQ). Carbon Monoxide (CO). http://www.epa.gov/iaq/co.html (last accessed on 22 March 2016).
    104. Unlu M, Ozturk C, Demirkol S, et al. Thrombolytic therapy in a patient with inferolateral myocardial infarction after carbon monoxide poisoning. Hum Exp Toxicol 35: 101−105, 2016.
    105. Uyttenboogaart M, Koch MW, Stewart RE, et al. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain 130: 1626–1630, 2007.
    106. Varon J, Marik PE, Fromm RE Jr, et al. Carbon monoxide poisoning: a review for clinicians. J Emerg Med 17: 87–93, 1999.
    107. Vyskocil A, Tusl M, Zaydlar K. The effect of carbon monoxide on hormone levels and organ weights in rats. J Appl Toxicol 6: 443–446, 1986.
    108. Vyskocil A, Tusl M, Zaydlar K. The effect of chronic exposure to 100 ppm carbon monoxide on brain biomines, serum corticosterone and organ weights in rats. J Appl Toxicol 3: 307–309, 1983.
    109. Wang C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res 2013: 390534, 2013.
    110. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 347: 1057–1067, 2002.
    111. Weaver LK, Valentine KJ, Hopkins RO. Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. Am J Respir Crit Care Med 176: 491–497, 2007.
    112. Weaver LK. Clinical practice. Carbon monoxide poisoning. N Engl J Med 360:1217–1225, 2009.
    113. Weaver LK. Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med 41: 339−354, 2014.
    114. Wiener R, Utiger RD, Lew R, et al. Age, sex, and serum thyrotropin concentrations in primary hypothyroidism. Acta Endocrinol (Copenh) 124: 364–369, 1991.
    115. Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med 174: 287–289, 2014.
    116. Wolf SJ, Lavonas EJ, Sloan EP, et al; American College of Emergency Physicians. Clinical policy: Critical issues in the management of adult patients presenting to the emergency department with acute carbon monoxide poisoning. Ann Emerg Med 51: 138–152, 2008.
    117. Wong CS, Lin YC, Hong LY, et al. Increased Long-Term Risk of Dementia in Patients With Carbon Monoxide Poisoning: A Population-Based Study. Medicine (Baltimore) 95: e2549, 2016.
    118. Wu P. Thyroid Disease and Diabetes. Clinical Diabetes 18: 38, 2000.
    119. Yarar C. Neurological effects of acute carbon monoxide poisoning in children. Journal of Pediatric Sciences 1: e2, 2009.
    120. Yip PS, Lee DT. Charcoal-Burning Suicides and Strategies for Prevention. Crisis 28 Suppl 1:21–27, 2007.
    121. Yücel M, Avsarogullari L, Durukan P, et al. BNP shows myocardial injury earlier than Troponin-I in experimental carbon monoxide poisoning. Eur Rev Med Pharmacol Sci 20: 1149−1154, 2016.
    122. Zou JF, Guo Q, Shao H, et al. A positive Babinski reflex predicts delayed neuropsychiatric sequelae in Chinese patients with carbon monoxide poisoning. Biomed Res Int 2014: 814736, 2014.
    123. Zou JF, Guo Q, Shao H, et al. Lack of pupil reflex and loss of consciousness predict 30-day neurological sequelae in patients with carbon monoxide poisoning. PLoS One 10: e0119126, 2015.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE