| 研究生: |
康欣愉 Kang, Sin-Yu |
|---|---|
| 論文名稱: |
梁腹橫向開孔鋼梁柱接頭耐震與耐火行為研究 Seismic and fire behavior of a steel beam-to-column connection with two stadium-shaped openings in the beam web |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 鋼梁柱接頭 、減弱式接頭 、梁腹板開孔 、耐震性能 、耐火性能 、開孔參數設計 |
| 外文關鍵詞: | steel beam-to-column connection, beam web-openings, fire behavior, seismic testing, finite element analysis |
| 相關次數: | 點閱:91 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對國內常用之H形鋼梁接箱型鋼柱接頭,透過實尺寸接頭耐震試驗與有限元素分析,探討梁腹開雙條孔對接頭受震與受火行為的影響。結果顯示,雙長條開孔減弱式接頭經反覆載重試驗到最大層間變位角4%兩個迴圈完成時,柱面彎矩強度仍可超過其鋼梁標稱塑性彎矩強度之80%,符合目前鋼結構設計規範之耐震設計要求。此外,梁腹開孔減弱式設計也提供接頭較好的塑性行為發展空間,使塑鉸發生在梁腹開孔位置、遠離柱面,故接頭進入塑性階段後柱面銲道附近上下翼板應力分佈較為均勻,避免應力集中所致破壞問題。有限元素分析進一步顯示,無論梁腹開孔與否,高溫下接頭破壞潛勢最高的位置是在柱面銲道外側梁下翼板。高溫800oC作用下,梁腹無開孔傳統式鋼梁柱接頭受熱在柱面附近變形被嚴重束制而產生應力集中,此大幅地提高接頭破壞潛勢且相關影響恐不亞於受震反覆加載。另一方面,梁腹開孔減弱式設計則提供空間緩解了接頭受熱變形的影響,因而有效地降低高溫破壞的可能。
This study evaluates the effects of beam-web openings on the seismic and fire behaviors of steel beam-to-column connections by full-scale cyclic loading tests and finite element analyses. Two stadium-shaped openings were designed and adopted in the beam web of a SN490B steel H-beam-to-box-column. The test results show that when subjected to cyclic loading with a drift ratio of 4% , the connection can sustain more than 80% of the nominal plastic bending moment of the steel beam. The connection performance met the seismic requirement of the AISC specification. In addition, the beam web-openings provided a space for the connection to develop better plastic behavior, removing the plastic hinge away from the column face, reducing the stress in the adjacent beam flanges. The results of finite element analyses further indicate that, high temperature may cause stress concentration in the bottom flanges of the connections without and with beam web-openings. For the conventional connection without beam-web openings, the 800 oC high temperature can greatly increase the potential of fracture, just like the seismic testing. On the other hand, the beam-web openings can provid a space to alleviate the high temperature stress, and thus can effectively reduce the possibility of connection fracture.
[1] FEMA, “Connection Test Summaries,” 1997.
[2] FEMA, “Interim Guidelines: Evaluation, Repair, Modification, and Design of Welded Steel Moment Frame Structures,” 1995.
[3] 李鎮宏, “鋼結構耐震韌性梁柱接頭之耐火性能研究,” 2010.
[4] 毛昶人, “鋼結構梁柱接頭區受火害行為研究,” 國立成功大學土木工程系碩士論文, 2009.
[5] FEMA 350, “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings,” 2000. [Online]. Available: www.seaoc.org
[6] “鋼骨梁貫通補強工法,” 2010.
[7] 蔡岳勳, “實尺寸鋼結構梁柱彎矩接頭試驗與分析,” 國立陽明交通大學土木工程系碩士論文, 2010.
[8] K.-C. Lin, S.-J. Jhuang, C.-H. Lin, C.-H. Li, and T.-H. Lin, “Design Handbook and Reference Drawings of Structural Steel Beam-to-Column Moment Connections for Buildings,” 2017.
[9] M.D. Engelhardt and T.A. Sabol, “Reinforcing of steel moment connections with cover plates: benefits and limitations,” 1998.
[10] 葉慶宇, “剪力板螺栓接合設計與鋼梁柱接頭耐震試驗分析研究,” 國立成功大學土木工程系碩士論文, 2019.
[11] 施祖涵, “鋼結構梁柱彎矩接頭於梁端腹板開孔之力學行為,” 國立陽明交通大學土木工程系博士論文, 2014.
[12] 王亭懿, “梁腹開孔鋼梁柱接頭耐震性能設計與火害行為模擬,” 國立成功大學土木工程系碩士論文, 2020.
[13] Eurocode 3, “Design of steel structures - Part 1-1: General rules and rules for buildings,” 2005.
[14] K. Boushehri, K. D. Tsavdaridis, and G. Cai, “Seismic behaviour of RWS moment connections to deep columns with European sections,” Journal of Constructional Steel Research, vol. 161, pp. 416–435, Oct. 2019, doi: 10.1016/j.jcsr.2019.07.009.
[15] 何思妤, “梁腹開孔鋼結構梁柱接頭之結構耐震與火害行為,” 國立成功大學土木工程系碩士論文, 2021.
[16] Amir A.Hedayat and MurudeCelikag, “Post-Northridge connection with modified beam end configuration to enhance strength and ductility,” Post-Northridge connection with modified beam end configuration to enhance strength and ductility, vol. 65, no. 7, pp. 1413–1430, Jul. 2009.
[17] 日本建築學會, “鋼構造接合部設計指南,” 2012.
[18] 經濟部標準檢驗局, “CNS12514-1建築物構造構件耐火試驗法第一部:一般要求事項,” 2014.
[19] AISC, “Seismic Provisions for Structural Steel Buildings,” 2016. [Online]. Available: www.aisc.org
[20] 何明錦 et al., “鋼結構梁柱接頭高溫載重行為研究,” 2005.
[21] J. Xu, X. Gan, J. Han, D. Chong, Z. Han, and Z. Li, “Study on seismic performance of welding beam reinforced with symmetrical flange plate to H-shaped column after fire,” Feb. 2022, doi: 10.1016/j.jcsr.2021.107106.
[22] 蘇聖斐, “抗彎矩構架高溫結構行為,” 國立高雄第一科技大學營建工程系碩士論文, 2005.
[23] M. S. Seif, J. A. Main, and F. H. Sadek, “Behavior of structural steel moment connections under fire loading,” 2015.
[24] Z. Guo and S. S. Huang, “Behaviour of restrained steel beam with reduced beam section exposed to fire,” Journal of Constructional Steel Research, vol. 122, pp. 434–444, Jul. 2016, doi: 10.1016/j.jcsr.2016.04.013.
[25] 內政部營建署, “CNS13812 建築結構用軋鋼料,” 2014.
[26] 內政部營建署, “鋼結構容許應力設計法規範第十三章:耐震設計,” 2010.
[27] 陳佳郁, “鋼梁柱接頭剪力板螺栓接合設計與分析驗證,” 國立成功大學土木工程系碩士論文, 2017.
[28] A.P. Boresi, R.J. Schemidit, and O.M. Sidebottom, Advanced Mechanics of Materials. 1993.
[29] S. El-Tawil, A. Member, T. Mikesell, and S. K. Kunnath, “EFFECT OF LOCAL DETAILS AND YIELD RATIO ON BEHAVIOR OF FR STEEL CONNECTIONS,” 2000.
[30] AISC, “Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No. 1,” 2016.
[31] 內政部營建署, “鋼結構容許應力設計法規範第一章:總則,” 2010.
[32] 內政部營建署, “鋼構造建築物鋼結構設計技術規範,” 2016.