簡易檢索 / 詳目顯示

研究生: 黃政鈞
Huang, Cheng-Chun
論文名稱: 使用位移場計算含裂縫平版之應力強度因子
Calculation of Stress Intensity Factors for cracked plates using displacement field
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 應力強度因子三維柏松比位移有限元素法中央水平裂縫中央傾斜裂縫Mode-IMode-IIMode-III
外文關鍵詞: stress intensity factors, three dimensional, Poisson’s ratio, displacement, finite element method, central horizontal crack, central slant crack, Mode-I, Mode-II, Mode-III
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用有限元素分析法與實驗方法研究在一個有限平板的三維效應,並且本研究也探討三維裂縫問題的柏松比效應。本研究之試體材料為鋼材, 並且有兩種厚度為9毫米的均質平板,其中一種是中央水平裂縫,另一種是中央傾斜裂縫。對於實驗部分的主要目的是從對試體進行拉伸實驗中得到位移場。對於有限元素分析方法來說,其主要目的是模擬出在不同柏松比下的位移場以及應力強度因子,並且將模擬出的位移場結果與實驗的位移場結果作比較。比較結果顯示,有限元素與實驗兩者模擬出的位移等高線圖形相似,並且位移等高線在裂縫尖端排列緊密且有很大的變化。此外,有限元素分析也展示了Mode-I、Mode-II以及Mode-III三種不同負載類型下應力強度因子的結果,對於研究應力強度因子而言,假如柏松比增加,應力強度因子會隨著最大半徑的改變而有明顯的變化,而當最大半徑增加,則每一層的應力強度因子將會逐漸的趨近於中間層應力強度因子值。因此結果證明柏松比效應對於應力強度因子的影響是清晰可見的,並且裂縫問題具有明顯的三維效應。

    This thesis researched the three dimensional (3D) effect of crack problems in a finite plate by using finite element and experimental methods, and the study also observed the Poisson’s ratio effect for the 3D crack problems. The material of specimens is steel, and there are two homogeneous specimens for the 9-mm thickness plates with a central horizontal crack and a central slant crack, respectively. For the experiment, the aim is to obtain the displacement field from the experiment, which the specimen is subjected by the tension forces. For the finite element method (FEM), the aim is to simulate the displacement field and the stress intensity factors (SIFs) with different Poisson’s ratio, and the results of the displacement are used to compare with the experimental results. The comparisons indicated that displacement contours graphics are similar between the finite element and experimental simulations, and the displacement contour has a great variation and tightly packed in the vicinity of the crack tip. Moreover, the finite element analyses also show the results of SIFs under different load types, which are Mode-I, Mode-II and Mode-III. For the investigation of the SIFs, if the Poisson’s ratio increases, the variations of the SIFs are more obvious changing with the maximum radius (Rmax). When the Rmax increases, the SIFs of all layers approach gradually to the SIFs of the middle layer. Thus, the results proved that the Poisson’s ratio effect affects the SIFs visibly, and the crack problem has the obvious 3D effect.

    摘要 i Abstract ii 致謝. iii Contents iv List of Figures vi List of Tables ix Chapter1 Introduction 1 1.1 Background and purpose 1 1.2 Literature review 4 1.2.1 Literature for the digital image correlation method 4 1.2.2 Literature for the displacement field near crack front 6 1.2.3 Literature for the stress intensity factors 8 Chapter2 Theoretical Background 11 2.1 Introduction 11 2.2 The theory of the least-squares method 11 Chapter3 The Non-contact Measurement Experiment system 15 3.1 Introduction 15 3.2 Specimens produced and spray painting 16 3.3 Spray painting 18 3.4 Instrument introduced 21 3.4.1 Loading frame: 21 3.4.2 Controller: 23 3.4.3 Hydraulic power packs and cooling tower: 23 3.4.4 Gird and Hydraulic power: 24 3.4.5 Digital camera: 25 3.4.6 Notebook and IEEE1394 cable: 25 3.4.7 Tripod: 25 3.4.8 Optical system: 25 3.5 Instrument setting 27 3.6 Measurement step 29 Chapter4 Finite element analyses of 3D cracked plates 34 4.1 Introduction 34 4.2 A plate with a central horizontal crack 34 4.3 A plate with a central slant crack 36 4.4 Thickness of the layer 37 4.5 The procedure for finite element analysis 38 4.6 The image correlation program CCD82. 38 Chapter5 Results of experiments and finite element analyses 44 5.1 Introduction 44 5.2 Experimental results 45 5.3 Finite element results 47 5.4 Discussions and conclusions 48 Chapter6 Conclusion and Recommendations 74 6.1 Conclusion 74 6.2 Recommendations 76 References 77

    1. 1. Peters WH, Ranson WF, Sutton MA, Chu TC, and Anderson J, Application of digital correlation methods to rigid body mechanics. Optical Engineering, 22(6) pp. 738-742 (1983).
    2. Nunes LCS, and Reis JML, Experimental investigation of mixed-mode-I/II fracture in polymer mortars using digital image correlation method. Latin American Journal of Solids and Structures, 11(2) pp. 330-343 (2014).
    3. Cofaru C, Philips W, and Van Paepegem W, A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains. Measurement Science & Technology, 23(10) pp. (2012).
    4. Wang M, Hu X-F, and Wu X-P, Digital image correlation method for the analysis of 3-D internal displacement field in object. Acta Physica Sinica, 55(10) pp. 5135-5139 (2006).
    5. Zhiguo L, Neng H, Zemin F, and Haili L, The study of non-contact measure method for deformation based on the digital Image correlation. Advanced Materials Research, 718-720 pp. 853-857 (2013).
    6. Vendroux G, and Knauss WG, Submicron deformation field measurements: Part 2. Improved digital image correlation. Experimental Mechanics, 38(2) pp. 86-92 (1998).
    7. Ha K, A parametric study of displacement measurements using digital image correlation method. Ksme International Journal, 14(5) pp. 518-529 (2000).
    8. McNeill SR, Peters WH, and Sutton MA, Estimation of stress intensity factor by digital image correlation. Engineering Fracture Mechanics, 28(1) pp. 101-112 (1987).
    9. Yoneyama S, Morimoto Y, and Takashi M, Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain, 42(1) pp. 21-29 (2006).
    10. Lee C, Peters WH, Chao YJ, and Sutton MA, Improved digital image-processing technique to investigate plastic zone formation in steel. Image and Vision Computing, 4(4) pp. 203-207 (1986).
    11. Kahnjetter ZL, and Chu TC, 3-Dimensional displacement measurements using digital image correlation and photogrammic analysis. Experimental Mechanics, 30(1) pp. 10-16 (1990).
    12. Kim CI, Schiavone P, and Ru CQ, Analysis of plane-strain crack problems (Mode-I & Mode-II) in the presence of surface elasticity. Journal of Elasticity, 104(1-2) pp. 397-420 (2011).
    13. Baxevanis T, Chemisky Y, and Lagoudas DC, Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Materials and Structures, 21(9) pp. (2012).
    14. Dubois F, Meite M, Pop O, and Absi J, Characterization of timber fracture using the digital image correlation technique and finite element method. Engineering Fracture Mechanics, 96 pp. 107-121 (2012).
    15. Nunes LCS, and Reis JML, Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method. Materials & Design, 33 pp. 248-253 (2012).
    16. Zhu XK, Liu GT, and Chao YJ, Three-dimensional stress and displacement fields near an elliptical crack front. International Journal of Fracture, 109(4) pp. 383-401 (2001).
    17. Merhar M, Bucar DG, and Bucar B, Mode I critical stress intensity factor of beech wood (Fagus Sylvatica) in a TL Configuration: A Comparison of Different Methods. Drvna Industrija, 64(3) pp. 221-229 (2013).
    18. Bakker A, 3-Dimensional constraint effects on stress intensity distributions in plate geometries with through-thickness cracks. Fatigue & Fracture of Engineering Materials & Structures, 15(11) pp. 1051-1069 (1992).
    19. Liu J-y, Lin G, Li X-c, and Xu F-l, Evaluation of stress intensity factors for multiple cracked circular disks under crack surface tractions with SBFEM. China Ocean Engineering, 27(3) pp. 417-426 (2013).
    20. Pook LP, A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue & Fracture of Engineering Materials & Structures, 36(8) pp. 699-723 (2013).
    21. Ghajar R, and Moghaddam AS, Numerical investigation of the mode III stress intensity factors in FGMs considering the effect of graded Poisson's ratio. Engineering Fracture Mechanics, 78(7) pp. 1478-1486 (2011).
    22. Ju SH, Simulating stress intensity factors for anisotropic materials by the least-squares method. International Journal of Fracture, 81(3) pp. 283-297 (1996).
    23. Sih GC, Review of 3-Dimensional stress problem for a cracked plate. International Journal of Fracture Mechanics, 7(1) pp. 39-61 (1971).
    24. Pook LP, A note on corner point singularities. International Journal of Fracture, 53(1) pp. R3-R8 (1992).
    25. Ju SH, Simulating three-dimensional stress intensity factors by the least-squares method. International Journal for Numerical Methods in Engineering, 43(8) pp. 1437-1451 (1998).
    26. 朱聖浩,結構實驗,「國立成功大學土木工程研究所」,結構實驗課程講義(2002)。
    27. 巫俊憲,「使用位移量測研究含裂縫平板的三維效應」,國立成功大學土木工程研究所,碩士論文(2013)。
    28. 趙伯彰,「複合材料與壓電材料之缺角應力分析」,國立成功大學土木工程研究所,碩士論文(2009)。
    29. 呂至中,「不同內插函數應用於數位影像相關法之準確度研究」,國立成功大學土木工程研究所,碩士論文(2010)。

    下載圖示 校內:2016-08-14公開
    校外:2016-08-14公開
    QR CODE