| 研究生: |
李曼妮 Lee, Man-Nee |
|---|---|
| 論文名稱: |
在合成堇青石過程晶種之粒徑及添加量對出現過渡相的關係研究 Effects of sizes and amounts of seed addition on the presence of intermediate phases in synthesizing cordierite powders. |
| 指導教授: |
黃啟原
Huang, Chi-yuan |
| 共同指導教授: |
顏富士
Yen, Fu-Su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 堇青石 、過渡相 、晶種 |
| 外文關鍵詞: | Cordierite, intermediate phase, seed |
| 相關次數: | 點閱:71 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以滑石(d50=6.4 μm)、高嶺土(d50=3.1 μm)以及α-Al2O3(d50=253 nm)粉末依照堇青石之計量比混合。經計算三者以1:10.88:3672.55顆數組成約一10 μm之反應單元。另外添加d50為2.5、21.5、44.3 μm堇青石粉末作為晶種,藉此觀察晶種添加對合成堇青石過程過渡相以及堇青石生成量之影響。計算d50為2.5(C2)、21.5(C20)、44.3 μm(C40)晶種的單層披覆量為15、30、55wt%(-15、-30、-55)。研究主要透過DTA、XRD、XRF、SEM、PSD、分析結果。
結果發現,隨晶種變細,α-Al2O3延後消失,由α-Al2O3生成Spinel的過程改為生成Cordierite,即粗晶種(C20 & C40):α-Al2O3 + Enstatite → Spinel + SiO2,而細晶種(C2):α-Al2O3 + Enstatite + 3/2 SiO2 → 1/2 Cordierite。相同情況,Mullite則提前結束,由其結晶相消失過程推知:由Mullite為來源的兩個路徑,即添加粗晶種下:Mullite + 3 Enstatite → 3 Spinel + 5 SiO2,而細晶種:Mullite + 3 Enstatite + 5/2 SiO2 → 3/2 Cordierite。因此Spinel之生成粗晶種多而細晶種少。此結果使Cordierite的生成溫度於1200oC由α-Al2O3、Enstatite、Mullite加上玻璃相SiO2直接合成(在不經Spinel步驟)。即α-Al2O3 + Enstatite + SiO2與Mullite + Enstatite + SiO2,直接生成Cordierite。其中以添加細晶種樣品C2-30 & C2-55最為明顯。上述的影響也隨晶種添加量越多而越明顯。
實驗中三種粒徑晶種之計算單層披覆量樣品(C2-15、C20-30及C40-55)皆可獲得最高之堇青石生成量。而過多與過少晶種都使堇青石生成量下降,其中以細粒徑晶種C2-15現象是最明顯。
In this study, raw materials talc (d50=6.4 μm), kaolinite (3.1 μm), and α-Al2O3 (253 nm) powders were weighted and mixed firstly with each other at a stoichiometric composition of cordierite. Assumed that the raw materials powders were forming agglomerates of stoichiometric cordierite composition, acting as the reaction units. The calculated reaction unit that composed of the raw materials powders of 1 talc particle, 10.88 kaolinite particles and 3672.55 α-Al2O3 particles then determined to be 10 μm. Furthermore, this research added cordierite powders acting as seeds with particle sizes (d50) of 2.5 (C2), 21.5 (C20), 44.3 μm (C40).The calculated mixing weight fractions of the three seed powders that will surround the 10 μm reaction units with single layer were 15, 30, 55 weight % (-15, -30, -55), respectively. Experiment was analyzed by DTA, XRD, XRF, SEM, PSD techniques.
It was found that α-Al2O3 delayed disappearance with the fine seed additions, indicating that the reaction route for α-Al2O3 to form spinel that transforms to cordierite, subsequently is altered. In case of coarse seeds added, α-Al2O3 + enstatite → spinel + SiO2 occurred, while the fine seeds was added, mullite + 3 enstatite + 5/2 SiO2 → 3/2 cordierite occurred. Similarly, mullite diminished early, indicating that the two reaction routes for mullite : mullite + 3 enstatite → 3 spinel + 5 SiO2 by coarse seed addition, while mullite + 3 enstatite + 5/2 SiO2 → 3/2 cordierite by fine seed addition. Therefore, the spinel formation of coarser seed was more than finer. The result showed that α-Al2O3, enstatite, mullite and SiO2 will directly form that of cordierite at temperature about 1200oC. And the seeding effect increases with higher amounts of seed additions, especially for samples with finer seeds addition C2-30 & C2-55.
Seed particles that can reach single layer surrounding to reaction units, samples C2-15, C20-30, C40-55 will result in a higher amount of cordierite formation. And the effect increases with the finer seed additions, especially C2-15. Either insufficient amounts of seed addition or over-use of them gave the reduction in cordierite formation.
1. 顏富士, 游佩青, 陳政毓, and 李曼妮, "合成堇青石之創新作業技術開發," 鑛冶:中國鑛冶工程學會會刊[221] 69-76 (2013).
2. M. Kumagai and G. L. Messing, "Enhanced Densification of Boehmite Sol-Gels by Alpha-Alumina Seeding," J. Am. Ceram. Soc., 67[11] C230-C31 (1984).
3. M. Kumagai and G. L. Messing, "Controlled Transformation and Sintering of a Boehmite Sol-Gel by Alpha-Alumina Seeding," J. Am. Ceram. Soc., 68[9] 500-05 (1985).
4. R. A. Shelleman, G. L. Messing, and M. Kumagai, "Alpha-Alumina Transformation in Seeded Boehmite Gels," J. Non-Cryst. Solids, 82[1-3] 277-85 (1986).
5. A. M. Kazakos, S. Komarneni, and R. Roy, "Sol-Gel Processing of Cordierite - Effect of Seeding and Optimization of Heat-Treatment," J. Mater. Res., 5[5] 1095-103 (1990).
6. U. Selvaraj, S. Komarneni, and R. Roy, "Seeding Effects on Crystallization Temperatures of Cordierite Glass Powder," J. Mater. Sci., 26[13] 3689-92 (1991).
7. M. Okuyama, T. Fukui, and C. Sakurai, "Effects of Seeding on Phase-Transformation and Mechanical-Properties in Complex-Alkoxide-Derived Cordierite Gel Powder," J. Mater. Res., 7[8] 2281-87 (1992).
8. E. M. Levin, C. R. Robbins, and H. F. McMurdie, "Phase Diagrams for Ceramists." American Ceramic Society: Columbus, Ohio, (1964).
9. C. Klein, C. S. Hurlbut, and J. D. Dana, "The 22nd Edition of the Manual of Mineral Science : (after James D. Dana)." J. Wiley: New York, (2002).
10. 劉永杰, 孫杰璟, and 王英姿, "堇青石材料的應用," 山東冶金[03] (2002).
11. M. D. Karkhanavala and F. A. Hummel, "The Polymorphism of Cordierite," J. Am. Ceram. Soc., 36[12] 389-92 (1953).
12. M. D. Glendenning and W. E. Lee, "Microstructural Development on Crystallizing Hot-Pressed Pellets of Cordierite Melt-Derived Glass Containing B2o3 and P2o5," J. Am. Ceram. Soc., 79[3] 705-13 (1996).
13. P. Predecki, J. Haas, J. Faber, and R. L. Hitterman, "Structural Aspects of the Lattice Thermal-Expansion of Hexagonal Cordierite," J. Am. Ceram. Soc., 70[3] 175-82 (1987).
14. A. Putnis and D. L. Bish, "The Mechanism and Kinetics of Al,Si Ordering in Mg-Cordierite," Am. Miner., 68[1-2] 60-65 (1983).
15. W. Schreyer and J. F. Schairer, "Compositions and Structural States of Anhydrous Mg-Cordierites - a Re-Investigation of the Central Part of the System Mgo-Al2o3-Sio2," J. Petrol., 2[3] 324-406 (1961).
16. M. F. Hochella and G. E. Brown, "Structural Mechanisms of Anomalous Thermal-Expansion of Cordierite-Beryl Ans Other Framework Silicates," J. Am. Ceram. Soc., 69[1] 13-18 (1986).
17. A. Putnis, "Introduction to Mineral Sciences." University Press: Cambridge, (1993).
18. A. Putnis, C. A. Fyfe, and G. C. Gobbi, "Al,Si Ordering in Cordierite Using Magic Angle Spinning Nmr 1. Si-29 Spectra of Synthetic Cordierites," Phys. Chem. Miner., 12[4] 211-16 (1985).
19. M. F. Hochella, G. E. Brown, F. K. Ross, and G. V. Gibbs, "High-Temperature Crystal-Chemistry of Hydrous Mg-Cordierites and Fe-Cordierites," Am. Miner., 64[3-4] 337-51 (1979).
20. I. M. Lachman, R. D. Bagley, and R. M. Lewis, "Thermal-Expansion of Extruded Cordierite Ceramics," Am. Ceram. Soc. Bull., 60[2] 202-05 (1981).
21. N. Ibrahim, Z. A. Ahmad, and H. Mohamad, "Phase Analysis in the Crystallization of Cordierite," Advanced Materials Research, 501 91-95 (2012).
22. J. Banjuraizah, H. Mohamad, and Z. A. Ahmad, "Crystal Structure of Single Phase and Low Sintering Temperature of Alpha-Cordierite Synthesized from Talc and Kaolin," J. Alloy. Compd., 482[1-2] 429-36 (2009).
23. B. C. Lim and H. M. Jang, "Crystallization Kinetics and Phase-Transformation Characteristics in Seeded Monophasic Cordierite Gel," J. Mater. Res., 6[11] 2427-33 (1991).
24. R. Petrovic, D. J. Janackovic, S. Zec, S. Drmanic, and L. J. Kostic-Gvozdenovic, "Crystallization Behavior of Alkoxy-Derived Cordierite Gels," J. Sol-Gel Sci. Technol., 28[1] 111-18 (2003).
25. I. Jankovic-Castvan, S. Lazarevic, D. Tanaskovic, A. Orlovic, R. Petrovic, and D. Janackovic, "Phase Transformation in Cordierite Gel Synthesized by Non-Hydrolytic Sol-Gel Route," Ceram. Int., 33[7] 1263-68 (2007).
26. S. Komarneni, "Some Significant Advances in Sol-Gel Processing of Dense Structural Ceramics," J. Sol-Gel Sci. Technol., 6[2] 127-38 (1996).
27. G. Karagedov, A. Feltz, and B. Neidnicht, "Preparation of Cordierite Ceramics by Sol-Gel Technique," J. Mater. Sci., 26[23] 6396-400 (1991).
28. L. Elchahal, J. Werckmann, G. Pourroy, and C. Esnouf, "X-Ray and Electron-Diffraction Studies on Crystallization of 2 Cordierite Precursors Prepared by Atomization or Sol-Gel Process," J. Cryst. Growth, 156[1-2] 99-107 (1995).
29. B. Fotoohi and S. Blackburn, "Effects of Mechanochemical Processing and Doping of Functional Oxides on Phase Development in Synthesis of Cordierite," Journal of the European Ceramic Society, 32[10] 2267-72 (2012).
30. F. A. C. Oliveira and J. C. Fernandes, "Mechanical and Thermal Behaviour of Cordierite-Zirconia Composites," Ceram. Int., 28[1] 79-91 (2002).
31. J. B. Rodrigues Neto and R. Moreno, "Effect of Mechanical Activation on the Rheology and Casting Performance of Kaolin/Talc/Alumina Suspensions for Manufacturing Dense Cordierite Bodies," Applied Clay Science, 38[3-4] 209-18 (2008).
32. N. G. Dordevic and P. B. Jovanic, "Influence of Mechanical Activation on Elelctrical Properties of Cordierite Ceramics," Sci. Sinter., 40[1] 47-53 (2008).
33. S. Tamborenea, A. D. Mazzoni, and E. F. Aglietti, "Mechanochemical Activation of Minerals on the Cordierite Synthesis," Thermochimica Acta, 411[2] 219-24 (2004).
34. E. Yalamaç and S. Akkurt, "Additive and Intensive Grinding Effects on the Synthesis of Cordierite," Ceram. Int., 32[7] 825-32 (2006).
35. H. G. Wang, G. S. Fischman, and H. Herman, "Plasma-Sprayed Cordierite - Structure and Transformations," J. Mater. Sci., 24[3] 811-15 (1989).
36. M. T. Malachevsky, J. E. Fiscina, and D. A. Esparza, "Preparation of Synthetic Cordierite by Solid-State Reaction Via Bismuth Oxide Flux," J. Am. Ceram. Soc., 84[7] 1575-77 (2001).
37. R. Johnson, I. Ganesh, B. P. Saha, G. V. N. Rao, and Y. R. Mahajan, "Solid State Reactions of Cordierite Precursor Oxides and Effect of Cao Doping on the Thermal Expansion Behaviour of Cordierite Honeycomb Structures," J. Mater. Sci., 38[13] 2953-61 (2003).
38. K. Zhu, D. Y. Yang, J. Wu, and R. Zhang, "Synthesis of Cordierite with Low Thermal Expansion Coefficient," Advanced Materials Research, 105-106 802-04 (2010).
39. J. R. Gonzalez-Velasco, R. Ferret, R. Lopez-Fonseca, and M. A. Gutierrez-Ortiz, "Influence of Particle Size Distribution of Precursor Oxides on the Synthesis of Cordierite by Solid-State Reaction," Powder Technol., 153[1] 34-42 (2005).
40. A. Goleanu, "Synthesizing Cordierite in Ceramic Bodies," Ceramic Industry, 151[7] 14 (2001).
41. J. M. Benito, X. Turrillas, G. J. Cuello, A. H. De Aza, S. De Aza, and M. A. Rodríguez, "Cordierite Synthesis. A Time-Resolved Neutron Diffraction Study," Journal of the European Ceramic Society (2011).
42. R. Goren, H. Gocmez, and C. Ozgur, "Synthesis of Cordierite Powder from Talc, Diatomite and Alumina," Ceram. Int., 32[4] 407-09 (2006).
43. T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, "Solid State Synthesis and Its Characterization of High Density Cordierite Ceramics Using Fine Oxide Powders," J. Ceram. Soc. Jpn., 118[1375] 246-49 (2010).
44. H. L. Wen and F. S. Yen, "Growth Characteristics of Boehmite-Derived Ultrafine Theta and Alpha-Alumina Particles During Phase Transformation," J. Cryst. Growth, 208[1-4] 696-708 (2000).
45. 李智强, "低热膨胀堇青石质陶瓷材料制备与特性研究." in. 西安理工大学材料系, 2006.
46. K. Wefers and C. Misra, "Oxides and Hydroxides of Aluminum." Alcoa Research Laboratories, (1987).
47. J. R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, R. Ferret, A. Aranzabal, and J. A. Botas, "Synthesis of Cordierite Monolithic Honeycomb by Solid State Reaction of Precursor Oxides," J. Mater. Sci., 34[9] 1999-2002 (1999).
48. M. Wesolowski, "Thermal-Decomposition of Talc - a Review," Thermochimica Acta, 78[1-3] 395-421 (1984).
49. 顏富士, 陳政毓, and 游佩青, "以奈米氧化鋁粉末合成堇青石," 陶業, 32卷[1期] 頁1-7 (2013).
50. A. K. Chakravorty and D. K. Ghosh, "Kaolinite Mullite Reaction-Series - the Development and Significance of a Binary Aluminosilicate Phase," J. Am. Ceram. Soc., 74[6] 1401-06 (1991).