簡易檢索 / 詳目顯示

研究生: 王宜晴
Wang, Yi-Ching
論文名稱: 金屬有機骨架與其衍生物於電觸媒之應用
The application of metal−organic frameworks and their derived materials as electrocatalysts
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 134
中文關鍵詞: 電催化金屬有機骨架亞硝酸根離子感測電合成電分析
外文關鍵詞: electrocatalysis, MOF, nitrite sensor, electrosynthesis, electroanalysis
相關次數: 點閱:182下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal−organic frameworks, MOFs)是一系列由金屬節點與有機連結器構成的奈米孔洞材料,由於其高比表面積與化學可調性,以MOF製成的修飾電極可提升單位體積內的電化學活性位點密度,在電催化領域中極具發展力。然而大部分MOF缺乏水穩定性,使其在水溶液中的電化學應用受到限制,其中以鋯為金屬節點的MOF因金屬節點與有機連結器之間的強鍵結而能在水溶液中保持穩定。因此在本碩論的第一部分會使用溶劑輔助配體法搭配離子交換的方式將銀安裝以鋯為基底的MOF,NU-902。將該複合材料作為電觸媒應用在亞硝酸根離子於水溶液中的電化學感測,可得到比使用純NU-902更佳的感測效果。
    另外MOF也因為缺乏導電度,使其在需高電流密度的應用受到限制,而將MOF作為前驅物在惰性氣體中高溫碳化可得由金屬、金屬氧化物與多孔碳組成的MOF衍生材料,高導電度與孔洞性的特性使其適用於需高電流密度的應用,例如電解。因此在本碩論的第二部分會使用以鉛為基底的MOF衍生材料作為電催化生產己二腈的電觸媒,使用塔菲爾分析可知MOF衍生材料確實能達到與未使用觸媒相比時較快的反應動力學,進行電解實驗也可在較低過電位下觀察到顯著的催化效果。

    In this thesis, the application of metal−organic frameworks (MOFs) and their derived materials as electrocatalysts would be respectively investigated, and it could be separated to two parts.
    In the first part, silver nanoparticles (NPs) are installed into a porphyrinic zirconium-based metal−organic framework (Zr-MOF), NU-902, through a postsynthetic modification followed by an ion-exchange process. As both the silver NPs and porphyrinic linkers of NU-902 are electrocatalysts for the oxidation of nitrite, the obtained nanocomposite can be applied for the electrochemical nitrite sensor, and the resulting sensing performance is significantly better than that of the pristine porphyrinic Zr-MOF. The Ag-SO3-NU-902 thin films can be further applied for amperometric nitrite sensors. In the second part, nanoporous and electrically conductive MOF-derived materials composed of Pb, PbO, and carbon are synthesized by carbonizing a Pb-based MOF through thermal treatments, and these MOF-derived materials are served as electrocatalysts for the electrosynthesis of adiponitrile (ADN), the raw material for the production of Nylon 66. Electrolytic experiments at various applied potentials are conducted to quantify the production rate and faradaic efficiency toward ADN, and the result shows that the MOF-derived materials can act as electrocatalysts to initiate the electrochemical reduction of AN to produce ADN at a reduced overpotential.

    中文摘要 I Extend Abstract II 致謝 XI 目錄 XIII 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1 電化學介紹 1 1-1-1 電化學反應簡介 1 1-1-2 修飾電極與電化學相關應用 4 1-1-3 電化學感測 7 1-1-4 電化學催化 14 1-2 金屬有機骨架 18 1-2-1 金屬有機骨架介紹 18 1-2-2 金屬有機骨架衍生材料介紹 20 第二章 金屬有機骨架鑲嵌之銀奈米粒子於亞硝酸根離子感測之應用 22 2-1 實驗背景介紹 22 2-1-1 前言 22 2-1-2 電流式感測亞硝酸根離子觸媒 22 2-1-3 金屬有機骨架於電化學亞硝酸根離子感測上的應用 24 2-1-4 研究動機 26 2-2 實驗藥品與儀器介紹 28 2-2-1 實驗藥品 28 2-2-2 實驗儀器 30 2-3 實驗方法 31 2-3-1 金屬有機骨架NU-902的合成 31 2-3-2 後修飾鉀鹽(-K+SO3-)於NU-902 32 2-3-3 離子交換 33 2-3-4 修飾電極的製備 34 2-3-5 電化學分析方法 34 2-3-6 核磁共振(Nuclear Magnetic Resonance, NMR)樣品製備 35 2-4 材料鑑定結果分析 35 2-4-1 粉末X射線繞射圖譜(X ray diffraction patterns, XRD patterns) 35 2-4-2 掃描式電子顯微鏡圖(Scanning Electron Microscopic images, SEM images) 38 2-4-3 能量色散X射線光譜(Energy-dispersive X-ray spectroscopy, EDS) 40 2-4-4 核磁共振光譜(Nuclear Magnetic Resonance, NMR) 42 2-4-5 紫外光與可見光吸收圖譜(Ultraviolet-visible spectroscopy, UV-vis spectroscopy) 43 2-4-6 氮氣吸脫附曲線與孔徑分布圖(Nitrogen adsorption and desorption isotherm and Density Functional Theory (DFT) pore size distribution) 44 2-4-7 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 46 2-4-8 穿透式電子顯微鏡圖(Transmission Electron Microscopic images, TEM images) 48 2-5 電化學結果分析 49 2-5-1 循環伏安分析(Cyclic voltammetric analysis, CV analysis) 49 2-5-2 電流式感測分析 56 2-5-3 干擾物測試 59 2-6 小結 61 第三章 多孔電觸媒開發與其修飾電極於選擇性電催化生產己二腈之應用 63 3-1 背景介紹 63 3-1-1 前言 63 3-1-2 己二腈的電解合成法 64 3-1-3 研究動機 68 3-2 實驗藥品與儀器介紹 69 3-2-1 實驗藥品 69 3-2-2 實驗儀器 71 3-3 實驗方法 72 3-3-1 金屬有機骨架衍生材料的合成 72 3-3-2 修飾電極的製備 73 3-3-3 錠片的製備 74 3-3-4 產物鑑定 74 3-3-5 導電度測試實驗 78 3-3-6 修飾電極前處理 78 3-3-7 電化學實驗 79 3-4 材料鑑定結果分析 81 3-4-1 熱重分析曲線(Thermogravimetry Analysis curve, TGA curve) 81 3-4-2 粉末X射線繞射圖譜(X ray diffraction patterns, XRD patterns) 83 3-4-3 掃描式電子顯微鏡圖(Scanning Electron Microscopic images, SEM images) 86 3-4-4 能量色散X射線光譜圖(Energy dispersive X-ray spectroscopy, EDS) 88 3-4-5 穿透式電子顯微鏡圖(Transmission Electron Microscopic images, TEM images) 89 3-4-6 氮氣吸脫附曲線與BJH孔徑分布圖(Nitrogen adsorption and desorption isotherm and Barret-Joyner-Halenda (BJH) pore size distribution) 93 3-4-7 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 94 3-4-8 拉曼光譜(Raman spectrometry) 95 3-4-9 電流對電壓曲線 97 3-5 電化學結果分析 99 3-5-1 電化學活性面積(ECSA)分析 99 3-5-2 線性掃描伏安(LSV)分析 101 3-5-3 電解過程的電流對時間曲線 104 3-5-4 不同電位下電解的產物分析 106 3-6 小結 111 第四章 未來展望與建議 113 參考文獻 115

    1. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applicaitons, John Wiley & Sons, New York, 2001
    2. M. Gattrell and D. Kirk, A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc., 140, 903, 1993
    3. R. W. Murray, Chemically modified electrodes. Acc. Chem. Res., 13, 135-141, 1980
    4. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater., 7, 845-854, 2008
    5. G. Wang, L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012
    6. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367, 2001
    7. K. Jost, G. Dion and Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A, 2, 10776-10787, 2014
    8. K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull., 15, 783-789, 1980
    9. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater., 23, 4828-4850, 2011
    10. V. Augustyn, P. Simon and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 7, 1597-1614, 2014
    11. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier and D. Belanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc., 153, A2171, 2006
    12. J. Zheng and T. Jow, High energy and high power density electrochemical capacitors. J. Power Sources, 62, 155-159, 1996
    13. J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta, 56, 732-736, 2010
    14. K. C. Liu and M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc., 143, 124, 1996
    15. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources, 47, 89-107, 1994
    16. R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 41, 241-268, 2011
    17. M. Shi and F. C. Anson, Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion coatings on electrodes. Langmuir, 12, 2068-2075, 1996
    18. P. Bertoncello, I. Ciani, F. Li and P. R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir−Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir, 22, 10380-10388, 2006
    19. N. J. Ronkainen, H. B. Halsall and W. R. Heineman, Electrochemical biosensors. Chem. Soc. Rev., 39, 1747-1763, 2010
    20. P. N. Bartlett, Bioelectrochemistry: fundamentals, experimental techniques and applications, John Wiley & Sons, New York, 2008
    21. A. M. Grumezescu, Nanoparticles in Pharmacotherapy, Elsevier, Amsterdam, 2019
    22. A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci., 2, 21-25, 2011
    23. N. R. Stradiotto, H. Yamanaka and M. V. B. Zanoni, Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc., 14, 159-173, 2003
    24. D.-W. Hwang, S. Lee, M. Seo and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors–a review. Anal. Chim. Acta, 1033, 1-34, 2018
    25. M. Zhou, Y. Zhai and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem., 81, 5603-5613, 2009
    26. T. P. Nguy, T. Van Phi, D. T. Tram, K. Eersels, P. Wagner and T. T. Lien, Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 246, 461-470, 2017
    27. R. A. Dorledo de Faria, H. Iden, L. G. D. Heneine, T. Matencio and Y. Messaddeq, Non-enzymatic impedimetric sensor based on 3-aminophenylboronic acid functionalized screen-printed carbon electrode for highly sensitive glucose detection. Sensors, 19, 1686, 2019
    28. M. A. Ali, H. Jiang, N. K. Mahal, R. J. Weber, R. Kumar, M. J. Castellano and L. Dong, Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B Chem., 239, 1289-1299, 2017
    29. W. Liu, Y. Ma, G. Sun, S. Wang, J. Deng and H. Wei, Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosens. Bioelectron, 92, 305-312, 2017
    30. 王俊傑、黃士杰、李穎弦、楊汶釧和林修正,電催化(Electrocatalysis)及電催化觸媒(Electrocatalysts)的特性。化工,56,3-16,2009
    31. Y. Jia, J. Chen and X. Yao, Defect electrocatalytic mechanism: concept, topological structure and perspective. Mater. Chem. Front., 2, 1250-1268, 2018
    32. N. P. Lebedeva, M. T. M. Koper, J. M. Feliu and R. A. Van Santen, Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B, 106, 12938-12947, 2002
    33. D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li, R. M. Penner, R. E. Schaak and P. S. Weiss, Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano, 12, 9635-9638, 2018
    34. E. L. Clark, J. Resasco, A. Landers, J. Lin, L.-T. Chung, A. Walton, C. Hahn, T. F. Jaramillo and A. T. Bell, Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal., 8, 6560-6570, 2018
    35. P. Connor, J. Schuch, B. Kaiser and W. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem., 234, 979-994, 2020
    36. M. Shao, Q. Chang, J.-P. Dodelet and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 116, 3594-3657, 2016
    37. V. Rosca, M. Duca, M. T. de Groot and M. T. Koper, Nitrogen cycle electrocatalysis. Chem. Rev., 109, 2209-2244, 2009
    38. E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev., 38, 89-99, 2009
    39. H. J. Schäfer, Contributions of organic electrosynthesis to green chemistry. C. R. Chim., 14, 745-765, 2011
    40. D. Pollok and S. R. Waldvogel, Electro-organic synthesis–a 21st century technique. Chem. Sci., 11, 12386-12400, 2020
    41. C. Xiang, K. M. Papadantonakis and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting. Mater. Horiz., 3, 169-173, 2016
    42. X. Li, X. Hao, A. Abudula and G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A, 4, 11973-12000, 2016
    43. X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 44, 5148-5180, 2015
    44. L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc., 134, 17253-17261, 2012
    45. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science, 341, 1230444, 2013
    46. G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214, 2008
    47. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater., 1, 15018, 2016
    48. M. Saraf, R. Rajak and S. M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A, 4, 16432-16445, 2016
    49. C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem. Commun., 58, 51-56, 2015
    50. Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake and C.-W. Kung, Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019
    51. T.-E. Chang, C.-H. Chuang and C.-W. Kung, An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochem. Commun., 122, 106899, 2021
    52. C.-W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha and J. T. Hupp, Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett., 2, 2394-2401, 2017
    53. J. Lee, D.-W. Lim, S. Dekura, H. Kitagawa and W. Choe, MOP × MOF: Collaborative Combination of Metal–Organic Polyhedra and Metal–Organic Framework for Proton Conductivity. ACS Appl. Mater. Interfaces, 11, 12639-12646, 2019
    54. W. Xia, A. Mahmood, R. Zou and Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci., 8, 1837-1866, 2015
    55. Y.-Z. Chen, R. Zhang, L. Jiao and H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev., 362, 1-23, 2018
    56. K. Shen, X. Chen, J. Chen and Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal., 6, 5887-5903, 2016
    57. D. Reddy, J. Lancaster Jr and D. P. Cornforth, Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science, 221, 769-770, 1983
    58. Y. Li, H. Wang, X. Liu, L. Guo, X. Ji, L. Wang, D. Tian and X. Yang, Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liquid composite electrode. J. Electroanal. Chem., 719, 35-40, 2014
    59. K. Wang, C. Wu, F. Wang, C. Liu, C. Yu and G. Jiang, In-situ insertion of carbon nanotubes into metal-organic frameworks-derived α-Fe2O3 polyhedrons for highly sensitive electrochemical detection of nitrite. Electrochim. Acta, 285, 128-138, 2018
    60. F. Della Betta, L. Vitali, R. Fett and A. C. O. Costa, Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta, 122, 23-29, 2014
    61. R. A. Al-Okab and A. A. Syed, Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta, 72, 1239-1247, 2007
    62. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu and Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A, 1216, 3163-3167, 2009
    63. Z. Lin, X. Dou, H. Li, Y. Ma and J.-M. Lin, Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta, 132, 457-462, 2015
    64. H. Bagheri, A. Hajian, M. Rezaei and A. Shirzadmehr, Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater., 324, 762-772, 2017
    65. F. Bedioui and N. Villeneuve, Electrochemical nitric oxide sensors for biological samples–principle, selected examples and applications. Electroanalysis, 15, 5-18, 2003
    66. M. Yan, B. Yu, H. Dong-Xue and Z. Bing, Research progress on nitrite electrochemical sensor. Chin. J. Anal. Chem., 46, 147-155, 2018
    67. X. Huang, Y. Li, Y. Chen and L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B Chem., 134, 780-786, 2008
    68. P. K. Rastogi, V. Ganesan and S. Krishnamoorthi, A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J. Mater. Chem. A, 2, 933-943, 2014
    69. F. Liang, M. Jia and J. Hu, Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim. Acta, 75, 414-419, 2012
    70. D. Chen, J. Jiang and X. Du, Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection. Talanta, 155, 329-335, 2016
    71. A. Afkhami, F. Soltani-Felehgari, T. Madrakian and H. Ghaedi, Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron, 51, 379-385, 2014
    72. S. Li, J. Qu, Y. Wang, J. Qu and H. Wang, A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide. Anal. Methods, 8, 4204-4210, 2016
    73. L. Chen, X. Liu, C. Wang, S. Lv and C. Chen, Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchim. Acta, 184, 2073-2079, 2017
    74. C. Li, B. Guo, X. Guo and F. Wang, The electrochemical sensor based on electrochemical oxidation of nitrite on metalloporphyrin–graphene modified glassy carbon electrode. RSC Adv., 6, 90480-90488, 2016
    75. S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci., 4, 440-450, 2018
    76. P. Deria, D. A. Gómez-Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp and O. K. Farha, Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc (II) MOFs. J. Am. Chem. Soc., 138, 14449-14457, 2016
    77. D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei and H. C. Zhou, Zirconium‐metalloporphyrin PCN‐222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed., 51, 10307-10310, 2012
    78. P. Deria, W. Bury, I. Hod, C.-W. Kung, O. Karagiaridi, J. T. Hupp and O. K. Farha, MOF functionalization via solvent-assisted ligand incorporation: Phosphonates vs carboxylates. Inorg. Chem., 54, 2185-2192, 2015
    79. P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J. Am. Chem. Soc., 135, 16801-16804, 2013
    80. X. Gong, H. Noh, N. C. Gianneschi and O. K. Farha, Interrogating kinetic versus thermodynamic topologies of metal–organic frameworks via combined transmission electron microscopy and X-ray diffraction analysis. J. Am. Chem. Soc., 141, 6146-6151, 2019
    81. Y. Wang, Z. Hu, Y. Cheng and D. Zhao, Silver-decorated hafnium metal–organic framework for ethylene/ethane separation. Ind. Eng. Chem. Res., 56, 4508-4516, 2017
    82. L. Li, S. Shen, R. Lin, Y. Bai and H. Liu, Rapid and specific luminescence sensing of Cu (II) ions with a porphyrinic metal–organic framework. Chem. Commun., 53, 9986-9989, 2017
    83. X. Li, B. Ho, D. S. Lim and Y. Zhang, Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2. Green Chem., 19, 914-918, 2017
    84. W. Zheng, N. Shan, L. Yu and X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigm., 77, 153-157, 2008
    85. S. Afzal, W. A. Daoud and S. J. Langford, Self-cleaning cotton by porphyrin-sensitized visible-light photocatalysis. J. Mater. Chem., 22, 4083-4088, 2012
    86. J. Rouquerol, P. Llewellyn and F. Rouquerol, Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal, 160, 49-56, 2007
    87. S. Akel, R. Dillert, N. O. Balayeva, R. Boughaled, J. Koch, M. El Azzouzi and D. W. Bahnemann, Ag/Ag2O as a Co-catalyst in TiO2 photocatalysis: Effect of the Co-catalyst/photocatalyst mass ratio. Catal., 8, 647, 2018
    88. E. Sumesh, M. Bootharaju and T. Pradeep, A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater., 189, 450-457, 2011
    89. R. K. Gupta, M. Dubey, P. Z. Li, Q. Xu and D. S. Pandey, Size-controlled synthesis of Ag nanoparticles functionalized by heteroleptic dipyrrinato complexes having meso-pyridyl substituents and their catalytic applications. Inorg. Chem., 54, 2500-2511, 2015
    90. M. K. Dixit, D. Chery, C. Mahendar, C. Bucher and M. Dubey, Nanofabrication of Au nanoparticles over conductive metallohydrogel nanofibers for nanocatalysis application. Inorg. Chem. Front., 7, 991-1002, 2020
    91. G.-F. Wang, M.-G. Li, Y.-C. Gao and B. Fang, Amperometric sensor used for determination of thiocyanate with a silver nanoparticles modified electrode. Sensors, 4, 147-155, 2004
    92. G. Chang, J. Zhang, M. Oyama and K. Hirao, Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. J. Phys. Chem. B, 109, 1204-1209, 2005
    93. B. Keita, A. Belhouari, L. Nadjo and R. Contant, Electrocatalysis by polyoxometalate/vbpolymer systems: reduction of nitrite and nitric oxide. J. Electroanal. Chem., 381, 243-250, 1995
    94. S. R. Ahrenholtz, C. C. Epley and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc., 136, 2464-2472, 2014
    95. M. d. J. Velásquez-Hernández, R. Ricco, F. Carraro, F. T. Limpoco, M. Linares-Moreau, E. Leitner, H. Wiltsche, J. Rattenberger, H. Schröttner and P. Frühwirt, Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 21, 4538-4544, 2019
    96. S. Ma and J. A. Perman, Elaboration and Applications of Metal-Organic Frameworks, World Scientific, Singapore, 2018
    97. S. Dong, D. Zhang, G. Suo, W. Wei and T. Huang, Exploiting multi-function Metal-Organic Framework nanocomposite Ag@ Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal. Chim. Acta, 934, 203-211, 2016
    98. H. Chen, T. Yang, F. Liu and W. Li, Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens. Actuators B Chem., 286, 401-407, 2019
    99. D. K. Yadav, V. Ganesan, P. K. Sonkar, R. Gupta and P. K. Rastogi, Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta, 200, 276-282, 2016
    100. M. Tong, S. Dong, K. Wang and G. Suo, A porphyrin MOF and ionic liquid biocompatible matrix for the direct electrochemistry and electrocatalysis of cytochrome c. J. Electrochem. Soc., 164, B200, 2017
    101. C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang and K.-C. Ho, In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J. Mater. Chem. A, 4, 10673-10682, 2016
    102. B. Yuan, J. Zhang, R. Zhang, H. Shi, X. Guo, Y. Guo, X. Guo, S. Cai and D. Zhang, Electrochemical and electrocatalytic properties of a stable Cu-based metal-organic framework. Int. J. Electrochem. Sci., 10, 4899-4910, 2015
    103. L.-M. Shi, J.-X. Pan, B. Zhou and X. Jiang, A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework. J. Mater. Chem. B, 3, 9340-9348, 2015
    104. C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho and Y.-C. Liao, Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. J. Mater. Chem. A, 4, 11094-11102, 2016
    105. B. Yuan, J. Zhang, R. Zhang, H. Shi, N. Wang, J. Li, F. Ma and D. Zhang, Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuators B Chem., 222, 632-637, 2016
    106. D. E. Blanco, A. Z. Dookhith and M. A. Modestino, Controlling selectivity in the electrocatalytic hydrogenation of adiponitrile through electrolyte design. ACS Sustain. Chem. Eng., 8, 9027-9034, 2020
    107. W. C. Drinkard and R. V. Lindsey Jr, Hydrocyanation of olefins using selected nickel phosphite catalysts, U.S. Patent and Trademark Office, Washington, DC, 1970
    108. L. Bini, C. Müller and D. Vogt, Mechanistic studies on hydrocyanation reactions. ChemCatChem, 2, 590-608, 2010
    109. Y. Zhu, L. Gao, L. Wen and B. Zong, A review of adiponitrile industrial production processes and associated atom economies. Sci. Bull., 60, 1488-1501, 2015
    110. B.-Y. Li, W.-F. Huang and M.-C. Yang, Electrodimerization of acrylonitrile with a rotating rod electrode. J. Taiwan Inst. Chem. Eng., 115, 13-19, 2020
    111. F. Karimi, F. Mohammadi and S. Ashrafizadeh, An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile. J. Electrochem. Soc., 158, E129, 2011
    112. S. Wu, H. Zhang, X. Huang, Q. Liao and Z. Wei, Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Ind. Eng. Chem. Res., 2021
    113. X. Huang, L. Tan, L. Zhang, C. Li and Z. Wei, Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chem. Eng. J., 382, 123006, 2020
    114. D. E. Blanco, P. A. Prasad, K. Dunningan and M. A. Modestino, Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production. React. Chem. Eng., 5, 136-144, 2020
    115. D. E. Blanco, A. Z. Dookhith and M. A. Modestino, Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. React. Chem. Eng., 4, 8-16, 2019
    116. D. E. Blanco, R. Atwi, S. Sethuraman, A. Lasri, J. Morales, N. N. Rajput and M. A. Modestino, Effect of electrolyte cations on organic electrosynthesis: the case of adiponitrile electrochemical production. J. Electrochem. Soc., 167, 155526, 2020
    117. D. E. Blanco, B. Lee and M. A. Modestino, Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl. Acad. Sci. U.S.A., 116, 17683-17689, 2019
    118. W.-F. Huang and M.-C. Yang, Electrosynthesis of Adiponitrile with a Rotating Cylindrical Electrode. Ind. Eng. Chem. Res., 60, 13180-13190, 2021
    119. J. Yang, G. D. Li, J. J. Cao, Q. Yue, G. H. Li and J. S. Chen, Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead (II)–organic coordination polymers. Chem. Eur. J., 13, 3248-3261, 2007
    120. K.-J. Huang, X. Liu, W.-Z. Xie and H.-X. Yuan, Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids Surf. B, 64, 269-274, 2008
    121. W. H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li and C.-W. Kung, Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021
    122. C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.-H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang and C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021
    123. J. Stacy, Y. N. Regmi, B. Leonard and M. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev., 69, 401-414, 2017
    124. D. M. Morales and M. Risch, Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy, 3, 034013, 2021
    125. Y. Sun, B.-X. Dong and W.-L. Liu, An adjustable dual-emission fluorescent metal-organic framework: effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochim. Acta A, 223, 117283, 2019
    126. W. Xu, M. Dong, L. Di and X. Zhang, A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials, 9, 1432, 2019
    127. C. Nanthamathee, Effect of Co (II) dopant on the removal of Methylene Blue by a dense copper terephthalate. Res. J. Environ. Sci., 81, 68-79, 2019
    128. 朱文祥,無機化合物制備手冊。化學工業出版社,北京,2006
    129. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch, 3, 98-100, 1918
    130. F. J. Sotomayor, K. A. Cychosz and M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc. Mater. Surf. Res, 3, 34-50, 2018
    131. L. Ley, S. Kowalczyk, F. McFeely, R. Pollak and D. Shirley, X-Ray photoemission from zinc: Evidence for extra-atomic relaxation via semilocalized excitons. Phys. Rev. B, 8, 2392, 1973
    132. K. Kim, T. O'leary and N. Winograd, X-ray photoelectron spectra of lead oxides. Anal. Chem., 45, 2214-2218, 1973
    133. A. G. Shard, Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X‐rays. Surf. Interface Anal., 46, 175-185, 2014
    134. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. CarJ., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett., 8, 36-41, 2008
    135. R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian, Z. Li, X. Han and P. Xu, Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A, 3, 13426-13434, 2015
    136. L. Saini, M. K. Patra, M. K. Dhaka, R. K. Jani, G. K. Gupta, A. Dixit and S. R. Vadera, Ni/graphitic carbon core–shell nanostructure-based light weight elastomeric composites for Ku-band microwave absorption applications. CrystEngComm, 20, 4630-4640, 2018
    137. S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem., 327, 353-376, 1992
    138. M. Wu, C. Zhu, K. Wang, G. Li, X. Dong, Y. Song, J. Xue, W. Chen, W. Wei and Y. Sun, Promotion of CO2 electrochemical reduction via Cu nanodendrites. ACS Appl. Mater. Interfaces, 12, 11562-11569, 2020
    139. E. Kätelhön, L. Chen and R. G. Compton, Nanoparticle electrocatalysis: Unscrambling illusory inhibition and catalysis. Appl. Mater. Today, 15, 139-144, 2019
    140. L. Chen, E. Kätelhön and R. G. Compton, Unscrambling illusory inhibition and catalysis in nanoparticle electrochemistry: Experiment and theory. Appl. Mater. Today, 16, 141-145, 2019
    141. D. Li, C. Lin, C. Batchelor-McAuley, L. Chen and R. G. Compton, Tafel analysis in practice. J. Electroanal. Chem., 826, 117-124, 2018
    142. M. Wang, L. Wan and J. Luo, Promoting CO2 electroreduction on CuO nanowires with a hydrophobic Nafion overlayer. Nanoscale, 13, 3588-3593, 2021
    143. E. Rudnik and P. Biskup, Electrochemical studies of lead telluride behavior in acidic nitrate solutions. Archives of Metallurgy and Materials, 60, 95--100, 2015
    144. F. Karimi, S. Ashrafizadeh and F. Mohammadi, Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte. Chem. Eng. J., 183, 402-407, 2012
    145. B. P. Hay, J. R. Rustad and C. J. Hostetler, Quantitative structure-stability relationship for potassium ion complexation by crown ethers. A molecular mechanics and ab initio study. J. Am. Chem. Soc., 115, 11158-11164, 1993
    146. I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal–organic framework compound. J. Phys. Chem. Lett., 6, 586-591, 2015
    147. B. A. Johnson, A. Bhunia, H. Fei, S. M. Cohen and S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers. J. Am. Chem. Soc., 140, 2985-2994, 2018
    148. G. S. Mohammad-Pour, K. O. Hatfield, D. C. Fairchild, K. Hernandez-Burgos, J. Rodríguez-López and F. J. Uribe-Romo, A Solid-Solution Approach for Redox Active Metal–Organic Frameworks with Tunable Redox Conductivity. J. Am. Chem. Soc., 141, 19978-19982, 2019
    149. Q. Che, Q. Ma, J. Wang, G. Wang, Y. Zhu, R. Shi and P. Yang, Deprotonation promoted high oxygen evolution activity of plasma functionalized carbon cloth. Mater. Lett., 265, 127411, 2020

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE