| 研究生: |
王宜晴 Wang, Yi-Ching |
|---|---|
| 論文名稱: |
金屬有機骨架與其衍生物於電觸媒之應用 The application of metal−organic frameworks and their derived materials as electrocatalysts |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 電催化 、金屬有機骨架 、亞硝酸根離子感測 、電合成 、電分析 |
| 外文關鍵詞: | electrocatalysis, MOF, nitrite sensor, electrosynthesis, electroanalysis |
| 相關次數: | 點閱:182 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal−organic frameworks, MOFs)是一系列由金屬節點與有機連結器構成的奈米孔洞材料,由於其高比表面積與化學可調性,以MOF製成的修飾電極可提升單位體積內的電化學活性位點密度,在電催化領域中極具發展力。然而大部分MOF缺乏水穩定性,使其在水溶液中的電化學應用受到限制,其中以鋯為金屬節點的MOF因金屬節點與有機連結器之間的強鍵結而能在水溶液中保持穩定。因此在本碩論的第一部分會使用溶劑輔助配體法搭配離子交換的方式將銀安裝以鋯為基底的MOF,NU-902。將該複合材料作為電觸媒應用在亞硝酸根離子於水溶液中的電化學感測,可得到比使用純NU-902更佳的感測效果。
另外MOF也因為缺乏導電度,使其在需高電流密度的應用受到限制,而將MOF作為前驅物在惰性氣體中高溫碳化可得由金屬、金屬氧化物與多孔碳組成的MOF衍生材料,高導電度與孔洞性的特性使其適用於需高電流密度的應用,例如電解。因此在本碩論的第二部分會使用以鉛為基底的MOF衍生材料作為電催化生產己二腈的電觸媒,使用塔菲爾分析可知MOF衍生材料確實能達到與未使用觸媒相比時較快的反應動力學,進行電解實驗也可在較低過電位下觀察到顯著的催化效果。
In this thesis, the application of metal−organic frameworks (MOFs) and their derived materials as electrocatalysts would be respectively investigated, and it could be separated to two parts.
In the first part, silver nanoparticles (NPs) are installed into a porphyrinic zirconium-based metal−organic framework (Zr-MOF), NU-902, through a postsynthetic modification followed by an ion-exchange process. As both the silver NPs and porphyrinic linkers of NU-902 are electrocatalysts for the oxidation of nitrite, the obtained nanocomposite can be applied for the electrochemical nitrite sensor, and the resulting sensing performance is significantly better than that of the pristine porphyrinic Zr-MOF. The Ag-SO3-NU-902 thin films can be further applied for amperometric nitrite sensors. In the second part, nanoporous and electrically conductive MOF-derived materials composed of Pb, PbO, and carbon are synthesized by carbonizing a Pb-based MOF through thermal treatments, and these MOF-derived materials are served as electrocatalysts for the electrosynthesis of adiponitrile (ADN), the raw material for the production of Nylon 66. Electrolytic experiments at various applied potentials are conducted to quantify the production rate and faradaic efficiency toward ADN, and the result shows that the MOF-derived materials can act as electrocatalysts to initiate the electrochemical reduction of AN to produce ADN at a reduced overpotential.
1. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applicaitons, John Wiley & Sons, New York, 2001
2. M. Gattrell and D. Kirk, A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc., 140, 903, 1993
3. R. W. Murray, Chemically modified electrodes. Acc. Chem. Res., 13, 135-141, 1980
4. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater., 7, 845-854, 2008
5. G. Wang, L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012
6. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367, 2001
7. K. Jost, G. Dion and Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A, 2, 10776-10787, 2014
8. K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull., 15, 783-789, 1980
9. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater., 23, 4828-4850, 2011
10. V. Augustyn, P. Simon and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 7, 1597-1614, 2014
11. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier and D. Belanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc., 153, A2171, 2006
12. J. Zheng and T. Jow, High energy and high power density electrochemical capacitors. J. Power Sources, 62, 155-159, 1996
13. J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta, 56, 732-736, 2010
14. K. C. Liu and M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc., 143, 124, 1996
15. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources, 47, 89-107, 1994
16. R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 41, 241-268, 2011
17. M. Shi and F. C. Anson, Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion coatings on electrodes. Langmuir, 12, 2068-2075, 1996
18. P. Bertoncello, I. Ciani, F. Li and P. R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir−Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir, 22, 10380-10388, 2006
19. N. J. Ronkainen, H. B. Halsall and W. R. Heineman, Electrochemical biosensors. Chem. Soc. Rev., 39, 1747-1763, 2010
20. P. N. Bartlett, Bioelectrochemistry: fundamentals, experimental techniques and applications, John Wiley & Sons, New York, 2008
21. A. M. Grumezescu, Nanoparticles in Pharmacotherapy, Elsevier, Amsterdam, 2019
22. A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci., 2, 21-25, 2011
23. N. R. Stradiotto, H. Yamanaka and M. V. B. Zanoni, Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc., 14, 159-173, 2003
24. D.-W. Hwang, S. Lee, M. Seo and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors–a review. Anal. Chim. Acta, 1033, 1-34, 2018
25. M. Zhou, Y. Zhai and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem., 81, 5603-5613, 2009
26. T. P. Nguy, T. Van Phi, D. T. Tram, K. Eersels, P. Wagner and T. T. Lien, Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 246, 461-470, 2017
27. R. A. Dorledo de Faria, H. Iden, L. G. D. Heneine, T. Matencio and Y. Messaddeq, Non-enzymatic impedimetric sensor based on 3-aminophenylboronic acid functionalized screen-printed carbon electrode for highly sensitive glucose detection. Sensors, 19, 1686, 2019
28. M. A. Ali, H. Jiang, N. K. Mahal, R. J. Weber, R. Kumar, M. J. Castellano and L. Dong, Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B Chem., 239, 1289-1299, 2017
29. W. Liu, Y. Ma, G. Sun, S. Wang, J. Deng and H. Wei, Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosens. Bioelectron, 92, 305-312, 2017
30. 王俊傑、黃士杰、李穎弦、楊汶釧和林修正,電催化(Electrocatalysis)及電催化觸媒(Electrocatalysts)的特性。化工,56,3-16,2009
31. Y. Jia, J. Chen and X. Yao, Defect electrocatalytic mechanism: concept, topological structure and perspective. Mater. Chem. Front., 2, 1250-1268, 2018
32. N. P. Lebedeva, M. T. M. Koper, J. M. Feliu and R. A. Van Santen, Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B, 106, 12938-12947, 2002
33. D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li, R. M. Penner, R. E. Schaak and P. S. Weiss, Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano, 12, 9635-9638, 2018
34. E. L. Clark, J. Resasco, A. Landers, J. Lin, L.-T. Chung, A. Walton, C. Hahn, T. F. Jaramillo and A. T. Bell, Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal., 8, 6560-6570, 2018
35. P. Connor, J. Schuch, B. Kaiser and W. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem., 234, 979-994, 2020
36. M. Shao, Q. Chang, J.-P. Dodelet and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 116, 3594-3657, 2016
37. V. Rosca, M. Duca, M. T. de Groot and M. T. Koper, Nitrogen cycle electrocatalysis. Chem. Rev., 109, 2209-2244, 2009
38. E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev., 38, 89-99, 2009
39. H. J. Schäfer, Contributions of organic electrosynthesis to green chemistry. C. R. Chim., 14, 745-765, 2011
40. D. Pollok and S. R. Waldvogel, Electro-organic synthesis–a 21st century technique. Chem. Sci., 11, 12386-12400, 2020
41. C. Xiang, K. M. Papadantonakis and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting. Mater. Horiz., 3, 169-173, 2016
42. X. Li, X. Hao, A. Abudula and G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A, 4, 11973-12000, 2016
43. X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 44, 5148-5180, 2015
44. L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc., 134, 17253-17261, 2012
45. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science, 341, 1230444, 2013
46. G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214, 2008
47. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater., 1, 15018, 2016
48. M. Saraf, R. Rajak and S. M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A, 4, 16432-16445, 2016
49. C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem. Commun., 58, 51-56, 2015
50. Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake and C.-W. Kung, Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019
51. T.-E. Chang, C.-H. Chuang and C.-W. Kung, An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochem. Commun., 122, 106899, 2021
52. C.-W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha and J. T. Hupp, Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett., 2, 2394-2401, 2017
53. J. Lee, D.-W. Lim, S. Dekura, H. Kitagawa and W. Choe, MOP × MOF: Collaborative Combination of Metal–Organic Polyhedra and Metal–Organic Framework for Proton Conductivity. ACS Appl. Mater. Interfaces, 11, 12639-12646, 2019
54. W. Xia, A. Mahmood, R. Zou and Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci., 8, 1837-1866, 2015
55. Y.-Z. Chen, R. Zhang, L. Jiao and H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev., 362, 1-23, 2018
56. K. Shen, X. Chen, J. Chen and Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal., 6, 5887-5903, 2016
57. D. Reddy, J. Lancaster Jr and D. P. Cornforth, Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science, 221, 769-770, 1983
58. Y. Li, H. Wang, X. Liu, L. Guo, X. Ji, L. Wang, D. Tian and X. Yang, Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liquid composite electrode. J. Electroanal. Chem., 719, 35-40, 2014
59. K. Wang, C. Wu, F. Wang, C. Liu, C. Yu and G. Jiang, In-situ insertion of carbon nanotubes into metal-organic frameworks-derived α-Fe2O3 polyhedrons for highly sensitive electrochemical detection of nitrite. Electrochim. Acta, 285, 128-138, 2018
60. F. Della Betta, L. Vitali, R. Fett and A. C. O. Costa, Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta, 122, 23-29, 2014
61. R. A. Al-Okab and A. A. Syed, Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta, 72, 1239-1247, 2007
62. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu and Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A, 1216, 3163-3167, 2009
63. Z. Lin, X. Dou, H. Li, Y. Ma and J.-M. Lin, Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta, 132, 457-462, 2015
64. H. Bagheri, A. Hajian, M. Rezaei and A. Shirzadmehr, Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater., 324, 762-772, 2017
65. F. Bedioui and N. Villeneuve, Electrochemical nitric oxide sensors for biological samples–principle, selected examples and applications. Electroanalysis, 15, 5-18, 2003
66. M. Yan, B. Yu, H. Dong-Xue and Z. Bing, Research progress on nitrite electrochemical sensor. Chin. J. Anal. Chem., 46, 147-155, 2018
67. X. Huang, Y. Li, Y. Chen and L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B Chem., 134, 780-786, 2008
68. P. K. Rastogi, V. Ganesan and S. Krishnamoorthi, A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J. Mater. Chem. A, 2, 933-943, 2014
69. F. Liang, M. Jia and J. Hu, Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim. Acta, 75, 414-419, 2012
70. D. Chen, J. Jiang and X. Du, Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection. Talanta, 155, 329-335, 2016
71. A. Afkhami, F. Soltani-Felehgari, T. Madrakian and H. Ghaedi, Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron, 51, 379-385, 2014
72. S. Li, J. Qu, Y. Wang, J. Qu and H. Wang, A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide. Anal. Methods, 8, 4204-4210, 2016
73. L. Chen, X. Liu, C. Wang, S. Lv and C. Chen, Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchim. Acta, 184, 2073-2079, 2017
74. C. Li, B. Guo, X. Guo and F. Wang, The electrochemical sensor based on electrochemical oxidation of nitrite on metalloporphyrin–graphene modified glassy carbon electrode. RSC Adv., 6, 90480-90488, 2016
75. S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci., 4, 440-450, 2018
76. P. Deria, D. A. Gómez-Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp and O. K. Farha, Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc (II) MOFs. J. Am. Chem. Soc., 138, 14449-14457, 2016
77. D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei and H. C. Zhou, Zirconium‐metalloporphyrin PCN‐222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed., 51, 10307-10310, 2012
78. P. Deria, W. Bury, I. Hod, C.-W. Kung, O. Karagiaridi, J. T. Hupp and O. K. Farha, MOF functionalization via solvent-assisted ligand incorporation: Phosphonates vs carboxylates. Inorg. Chem., 54, 2185-2192, 2015
79. P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J. Am. Chem. Soc., 135, 16801-16804, 2013
80. X. Gong, H. Noh, N. C. Gianneschi and O. K. Farha, Interrogating kinetic versus thermodynamic topologies of metal–organic frameworks via combined transmission electron microscopy and X-ray diffraction analysis. J. Am. Chem. Soc., 141, 6146-6151, 2019
81. Y. Wang, Z. Hu, Y. Cheng and D. Zhao, Silver-decorated hafnium metal–organic framework for ethylene/ethane separation. Ind. Eng. Chem. Res., 56, 4508-4516, 2017
82. L. Li, S. Shen, R. Lin, Y. Bai and H. Liu, Rapid and specific luminescence sensing of Cu (II) ions with a porphyrinic metal–organic framework. Chem. Commun., 53, 9986-9989, 2017
83. X. Li, B. Ho, D. S. Lim and Y. Zhang, Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2. Green Chem., 19, 914-918, 2017
84. W. Zheng, N. Shan, L. Yu and X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigm., 77, 153-157, 2008
85. S. Afzal, W. A. Daoud and S. J. Langford, Self-cleaning cotton by porphyrin-sensitized visible-light photocatalysis. J. Mater. Chem., 22, 4083-4088, 2012
86. J. Rouquerol, P. Llewellyn and F. Rouquerol, Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal, 160, 49-56, 2007
87. S. Akel, R. Dillert, N. O. Balayeva, R. Boughaled, J. Koch, M. El Azzouzi and D. W. Bahnemann, Ag/Ag2O as a Co-catalyst in TiO2 photocatalysis: Effect of the Co-catalyst/photocatalyst mass ratio. Catal., 8, 647, 2018
88. E. Sumesh, M. Bootharaju and T. Pradeep, A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater., 189, 450-457, 2011
89. R. K. Gupta, M. Dubey, P. Z. Li, Q. Xu and D. S. Pandey, Size-controlled synthesis of Ag nanoparticles functionalized by heteroleptic dipyrrinato complexes having meso-pyridyl substituents and their catalytic applications. Inorg. Chem., 54, 2500-2511, 2015
90. M. K. Dixit, D. Chery, C. Mahendar, C. Bucher and M. Dubey, Nanofabrication of Au nanoparticles over conductive metallohydrogel nanofibers for nanocatalysis application. Inorg. Chem. Front., 7, 991-1002, 2020
91. G.-F. Wang, M.-G. Li, Y.-C. Gao and B. Fang, Amperometric sensor used for determination of thiocyanate with a silver nanoparticles modified electrode. Sensors, 4, 147-155, 2004
92. G. Chang, J. Zhang, M. Oyama and K. Hirao, Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. J. Phys. Chem. B, 109, 1204-1209, 2005
93. B. Keita, A. Belhouari, L. Nadjo and R. Contant, Electrocatalysis by polyoxometalate/vbpolymer systems: reduction of nitrite and nitric oxide. J. Electroanal. Chem., 381, 243-250, 1995
94. S. R. Ahrenholtz, C. C. Epley and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc., 136, 2464-2472, 2014
95. M. d. J. Velásquez-Hernández, R. Ricco, F. Carraro, F. T. Limpoco, M. Linares-Moreau, E. Leitner, H. Wiltsche, J. Rattenberger, H. Schröttner and P. Frühwirt, Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 21, 4538-4544, 2019
96. S. Ma and J. A. Perman, Elaboration and Applications of Metal-Organic Frameworks, World Scientific, Singapore, 2018
97. S. Dong, D. Zhang, G. Suo, W. Wei and T. Huang, Exploiting multi-function Metal-Organic Framework nanocomposite Ag@ Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal. Chim. Acta, 934, 203-211, 2016
98. H. Chen, T. Yang, F. Liu and W. Li, Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens. Actuators B Chem., 286, 401-407, 2019
99. D. K. Yadav, V. Ganesan, P. K. Sonkar, R. Gupta and P. K. Rastogi, Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta, 200, 276-282, 2016
100. M. Tong, S. Dong, K. Wang and G. Suo, A porphyrin MOF and ionic liquid biocompatible matrix for the direct electrochemistry and electrocatalysis of cytochrome c. J. Electrochem. Soc., 164, B200, 2017
101. C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang and K.-C. Ho, In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J. Mater. Chem. A, 4, 10673-10682, 2016
102. B. Yuan, J. Zhang, R. Zhang, H. Shi, X. Guo, Y. Guo, X. Guo, S. Cai and D. Zhang, Electrochemical and electrocatalytic properties of a stable Cu-based metal-organic framework. Int. J. Electrochem. Sci., 10, 4899-4910, 2015
103. L.-M. Shi, J.-X. Pan, B. Zhou and X. Jiang, A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework. J. Mater. Chem. B, 3, 9340-9348, 2015
104. C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho and Y.-C. Liao, Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. J. Mater. Chem. A, 4, 11094-11102, 2016
105. B. Yuan, J. Zhang, R. Zhang, H. Shi, N. Wang, J. Li, F. Ma and D. Zhang, Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuators B Chem., 222, 632-637, 2016
106. D. E. Blanco, A. Z. Dookhith and M. A. Modestino, Controlling selectivity in the electrocatalytic hydrogenation of adiponitrile through electrolyte design. ACS Sustain. Chem. Eng., 8, 9027-9034, 2020
107. W. C. Drinkard and R. V. Lindsey Jr, Hydrocyanation of olefins using selected nickel phosphite catalysts, U.S. Patent and Trademark Office, Washington, DC, 1970
108. L. Bini, C. Müller and D. Vogt, Mechanistic studies on hydrocyanation reactions. ChemCatChem, 2, 590-608, 2010
109. Y. Zhu, L. Gao, L. Wen and B. Zong, A review of adiponitrile industrial production processes and associated atom economies. Sci. Bull., 60, 1488-1501, 2015
110. B.-Y. Li, W.-F. Huang and M.-C. Yang, Electrodimerization of acrylonitrile with a rotating rod electrode. J. Taiwan Inst. Chem. Eng., 115, 13-19, 2020
111. F. Karimi, F. Mohammadi and S. Ashrafizadeh, An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile. J. Electrochem. Soc., 158, E129, 2011
112. S. Wu, H. Zhang, X. Huang, Q. Liao and Z. Wei, Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Ind. Eng. Chem. Res., 2021
113. X. Huang, L. Tan, L. Zhang, C. Li and Z. Wei, Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chem. Eng. J., 382, 123006, 2020
114. D. E. Blanco, P. A. Prasad, K. Dunningan and M. A. Modestino, Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production. React. Chem. Eng., 5, 136-144, 2020
115. D. E. Blanco, A. Z. Dookhith and M. A. Modestino, Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. React. Chem. Eng., 4, 8-16, 2019
116. D. E. Blanco, R. Atwi, S. Sethuraman, A. Lasri, J. Morales, N. N. Rajput and M. A. Modestino, Effect of electrolyte cations on organic electrosynthesis: the case of adiponitrile electrochemical production. J. Electrochem. Soc., 167, 155526, 2020
117. D. E. Blanco, B. Lee and M. A. Modestino, Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl. Acad. Sci. U.S.A., 116, 17683-17689, 2019
118. W.-F. Huang and M.-C. Yang, Electrosynthesis of Adiponitrile with a Rotating Cylindrical Electrode. Ind. Eng. Chem. Res., 60, 13180-13190, 2021
119. J. Yang, G. D. Li, J. J. Cao, Q. Yue, G. H. Li and J. S. Chen, Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead (II)–organic coordination polymers. Chem. Eur. J., 13, 3248-3261, 2007
120. K.-J. Huang, X. Liu, W.-Z. Xie and H.-X. Yuan, Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids Surf. B, 64, 269-274, 2008
121. W. H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li and C.-W. Kung, Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021
122. C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.-H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang and C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021
123. J. Stacy, Y. N. Regmi, B. Leonard and M. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev., 69, 401-414, 2017
124. D. M. Morales and M. Risch, Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy, 3, 034013, 2021
125. Y. Sun, B.-X. Dong and W.-L. Liu, An adjustable dual-emission fluorescent metal-organic framework: effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochim. Acta A, 223, 117283, 2019
126. W. Xu, M. Dong, L. Di and X. Zhang, A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials, 9, 1432, 2019
127. C. Nanthamathee, Effect of Co (II) dopant on the removal of Methylene Blue by a dense copper terephthalate. Res. J. Environ. Sci., 81, 68-79, 2019
128. 朱文祥,無機化合物制備手冊。化學工業出版社,北京,2006
129. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch, 3, 98-100, 1918
130. F. J. Sotomayor, K. A. Cychosz and M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc. Mater. Surf. Res, 3, 34-50, 2018
131. L. Ley, S. Kowalczyk, F. McFeely, R. Pollak and D. Shirley, X-Ray photoemission from zinc: Evidence for extra-atomic relaxation via semilocalized excitons. Phys. Rev. B, 8, 2392, 1973
132. K. Kim, T. O'leary and N. Winograd, X-ray photoelectron spectra of lead oxides. Anal. Chem., 45, 2214-2218, 1973
133. A. G. Shard, Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X‐rays. Surf. Interface Anal., 46, 175-185, 2014
134. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. CarJ., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett., 8, 36-41, 2008
135. R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian, Z. Li, X. Han and P. Xu, Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A, 3, 13426-13434, 2015
136. L. Saini, M. K. Patra, M. K. Dhaka, R. K. Jani, G. K. Gupta, A. Dixit and S. R. Vadera, Ni/graphitic carbon core–shell nanostructure-based light weight elastomeric composites for Ku-band microwave absorption applications. CrystEngComm, 20, 4630-4640, 2018
137. S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem., 327, 353-376, 1992
138. M. Wu, C. Zhu, K. Wang, G. Li, X. Dong, Y. Song, J. Xue, W. Chen, W. Wei and Y. Sun, Promotion of CO2 electrochemical reduction via Cu nanodendrites. ACS Appl. Mater. Interfaces, 12, 11562-11569, 2020
139. E. Kätelhön, L. Chen and R. G. Compton, Nanoparticle electrocatalysis: Unscrambling illusory inhibition and catalysis. Appl. Mater. Today, 15, 139-144, 2019
140. L. Chen, E. Kätelhön and R. G. Compton, Unscrambling illusory inhibition and catalysis in nanoparticle electrochemistry: Experiment and theory. Appl. Mater. Today, 16, 141-145, 2019
141. D. Li, C. Lin, C. Batchelor-McAuley, L. Chen and R. G. Compton, Tafel analysis in practice. J. Electroanal. Chem., 826, 117-124, 2018
142. M. Wang, L. Wan and J. Luo, Promoting CO2 electroreduction on CuO nanowires with a hydrophobic Nafion overlayer. Nanoscale, 13, 3588-3593, 2021
143. E. Rudnik and P. Biskup, Electrochemical studies of lead telluride behavior in acidic nitrate solutions. Archives of Metallurgy and Materials, 60, 95--100, 2015
144. F. Karimi, S. Ashrafizadeh and F. Mohammadi, Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte. Chem. Eng. J., 183, 402-407, 2012
145. B. P. Hay, J. R. Rustad and C. J. Hostetler, Quantitative structure-stability relationship for potassium ion complexation by crown ethers. A molecular mechanics and ab initio study. J. Am. Chem. Soc., 115, 11158-11164, 1993
146. I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal–organic framework compound. J. Phys. Chem. Lett., 6, 586-591, 2015
147. B. A. Johnson, A. Bhunia, H. Fei, S. M. Cohen and S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers. J. Am. Chem. Soc., 140, 2985-2994, 2018
148. G. S. Mohammad-Pour, K. O. Hatfield, D. C. Fairchild, K. Hernandez-Burgos, J. Rodríguez-López and F. J. Uribe-Romo, A Solid-Solution Approach for Redox Active Metal–Organic Frameworks with Tunable Redox Conductivity. J. Am. Chem. Soc., 141, 19978-19982, 2019
149. Q. Che, Q. Ma, J. Wang, G. Wang, Y. Zhu, R. Shi and P. Yang, Deprotonation promoted high oxygen evolution activity of plasma functionalized carbon cloth. Mater. Lett., 265, 127411, 2020