簡易檢索 / 詳目顯示

研究生: 羅維宏
Lo, Wei-Hong
論文名稱: 跨孔式震測法量測現場土層動態性質之研究
In-Situ Measurement of Dynamic Properties of Soil By Crosshole Method
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 跨孔震測法震幅比法頻譜比法頻譜斜率法複數連續小波轉換阻尼比泥岩
外文關鍵詞: Crosshole test, amplitude ratio method, spectral ratio method, spectral slope method, complex continuous wavelet transform
相關次數: 點閱:47下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於室內試驗求取的土壤動態參數常因擾動而失真,因此為了求取更可靠的土壤動態參數,現地試驗是不可缺少的一環,比較目前各種現場試驗中,下孔式震測法、跨孔式震測法在土壤波速檢測中經常被提起,而跨孔法又較下孔法,所以本文選擇以跨孔震測法進行試驗來獲得土壤的剪力波速,並可以透過波傳理論得到土壤剪力模數,唯在波形資料的判讀上因人工判讀而時常產生誤差,因此除人工判讀的方式以外,本研究同時以複數連續小波轉換來求取波速,並相互比對,以此求得最真實的剪力波速。此外,再以頻譜比法、頻譜斜率法、振幅比法(基本定義)三種不同的阻尼分析方法計算阻尼比,最後比較不同方法求得之參數並相互驗證,以期獲得相對準確之土壤動態參數。
    根據本研究結果顯示,複數連續小波轉換在相角分析上能有效判讀初達波及初達波峰歷時,以此求出的剪力波速與人工判讀相比幾無差別,因此以兩種方法相互佐證所求得之波速是十分可靠的,由此求得之剪力模數也是如此。而在求取阻尼比方面以頻譜斜率法表現最為可靠,此法雖在淺層有高估阻尼比之虞,但其優勢在整體資料較齊全完整,阻尼比值也比較具合理性,且求得之阻尼比與有效覆土壓力關係圖中,其資料點與趨勢線較為貼合,値得後人再繼續作深入研究。

    Compared with the laboratory test, field tests are the best choices in order to obtain more reliable soil dynamic parameters. Therefore, this article chooses to use the crosshole seismic measurement to obtain the soil shear wave velocity. However, manual interpretation of waveform data sometimes produces errors, so this study also uses complex continuous wavelet transformation to obtain wave velocity, and compare them against each other to find the most realistic shear wave velocity. In addition, there are three different damping analysis methods used to calculate the damping ratio, which are spectral ratio method, spectral slope method, and amplitude ratio method. In order to get relatively accurate soil dynamic parameters, we compare the parameters obtained by different methods and verify them.
    According to the results of this study, the complex continuous wavelet transform can effectively determine the first arrival duration and the first peak duration in the phase angle analysis, and the shear wave velocity obtained by this is almost the same as the manual interpretation. The wave velocity obtained is very reliable. In terms of obtaining the damping ratio, the spectral slope method is the most reliable method. Although this method may overestimate the damping ratio in shallow layers, its advantage is that it has more complete overall data, more reasonable damping ratio, and its data points fit better with trend lines in the relation diagram of damping ratio and effective earth pressure.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 1 1.3 研究內容 1 第二章 文獻回顧 4 2.1 前言 4 2.2 相關文獻回顧 5 2.2.1 傅立葉轉換 5 2.2.2 小波相關文獻 6 2.2.3 現場量測剪力模數 8 2.2.4 阻尼特性相關 11 第三章 跨孔震測法介紹與理論推導 16 3.1 震測法簡介 16 3.1.1 土壤動態性質 16 3.1.2 跨孔式震測法 19 3.2 剪力模數與剪力波速 20 3.2.1 基礎波傳理論 20 3.2.2 斯乃爾定律 24 3.2.3 剪力模數與剪力波速 26 3.3 土壤阻尼 29 3.3.1 相關阻尼參數定義 29 3.3.2 以振幅比法(基本定義)求得阻尼比 30 3.3.3 頻譜比法 32 3.3.4 頻譜斜率法 33 3.4 小波轉換 36 3.4.1 小波介紹 36 3.4.2 連續小波轉換 36 3.4.3 複數連續小波轉換 38 第四章 現地試驗案例 40 4.1 試驗地點 40 4.2 試驗儀器與設備 40 4.2.1 受波器 40 4.2.2 應力波源 40 4.2.3 氣壓供應系統 41 4.2.4 集線盒 41 4.2.5 擷取盒 41 4.2.6 電腦與軟體 41 4.3 試驗步驟與方法 47 4.3.1 儀器架設 47 4.3.2 分析軟體設定 47 4.3.3 試驗步驟 48 第五章 資料分析與結果討論 50 5.1 剪力波速計算與比較 50 5.1.1 人工判讀 50 5.1.2 複數連續小波轉換 55 5.1.3 兩法結果討論 70 5.2 剪力模數計算 75 5.3 土壤阻尼參數計算 78 5.3.1 以振幅比(基本定義)法計算 78 5.3.2 阻尼比計算:頻譜比法 80 5.3.3 阻尼比計算:頻譜斜率法 82 5.3.4 三法之差異與討論 84 5.4 試驗土層阻尼比與剪力波速、剪力模數之關係 90 第六章 結論與建議 92 6.1 結論 92 6.2 建議 93 參考文獻 94 附錄A 傾度管量測資料 100 附錄B 儀器校正資料 103

    1. 王志坤、鍾建華、艾合買提江‧阿布都熱合曼、鄭希民,「基於小波振幅頻譜和複小波相位頻譜的高分辨率層序劃分」,石油學報,第二十九卷,第六期,第865-869頁,2008。
    2. 王裕賢、蔡佩勳、李宜珊,「以連續小波轉換分析土層表面波波速之研究」,碩士論文,朝陽科技大學營建工程研究所,2010。
    3. 王平、王杰民、劉紅玫、王謙,「黃土層下覆強風化岩動彈性模量和阻尼比試驗研究」,西北地震學報,第三十三卷,第三期,第291-294頁,2011。
    4. 孔祥輝,「循環荷仔下紅層泥岩土的動態特性」,水文地質工程地質期刊,第三十九卷,第四期,第76-79頁,2012。
    5. 古旭程,「表面波譜法應用於土層動態特性評估之研究」,碩士論文,國立成功大學土木工程研究所,1993。
    6. 朱英茂,「傾斜儀的誤差與修正」,大地技師期刊,第12期,第28-37頁,2016。
    7. 李咸亨,「震波之量測」,地工技術雜誌,第十七期,第57-69頁,1987。
    8. 李咸亨、吳志明,「下井探測法量測剪力波速之影響因素探討」,中國土木水利工程學刊,第三卷,第一期,第15-27頁,1991。
    9. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5-19頁,1985。
    10. 周志維,「表面波譜法於評估現地土壤剪力波速之應用研究」,碩士論文,國立成功大學土木工程研究所,2006。
    11. 周暐翔,「複數連續小波轉換應用於基樁完整性檢測之研究」,碩士論文,國立成功大學土木工程研究所,2016。
    12. 倪勝火、常正之、楊全成、蔡佩勳、張稚煇,「鳳山市區土壤動態特性之研究」,行政院國家科學委員會防災科技研究報告82-45號,第5-10頁,第14-18頁,1994。
    13. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,2020。
    14. 徐政華,「複數連續小波轉換應用於下孔式、跨孔式震測法之研究」,碩士論文,國立成功大學土木工程研究所,2019。
    15. 徐羽柔,「應用動力三軸試驗探討海床土壤之動態特性」,碩士論文,國立成功大學土木工程研究所,2020。
    16. 常正之,「應用雷利波散射曲線反算土層動態參數之研究」,博士論文,國立成功大學土木工程研究所,1993。
    17. 陳文明,「下孔式震測法於現場土層動態參數量測之研究」,碩士論文,國立成功大學土木工程研究所,1994。
    18. 張雨廷、黃斌、張爽、傅旭東,「三種原狀土動力特性試驗研究」,人民長江期刊,第四十九卷,第八期,第88-93頁,2018。
    19. 張裕,「複數連續小波轉換應用於透地雷達信號之分析」,碩士論文,國立成功大學土木工程研究所,2020。
    20. 楊玉章,「應用離散小波轉換及複數連續小波轉換於評估基樁長度之研究」,博士論文,國立成功大學土木工程研究所,2017。
    21. 楊子彤,「複數小波轉換於評估基樁長度之研究」,碩士論文,國立成功大學土木工程研究所,2017。
    22. 楊薪樺,「複數連續小波轉換函數應用於基樁非破壞檢測之研究」,碩士論文,國立成功大學土木工程研究所,2018。
    23. 賴勇裕,「複數小波轉換於偵測預力樁長度之案例研究」,碩士論文,國立成功大學土木工程研究所,2017。
    24. 韓紹英,「跨孔法測試阻尼比的幾個問題」,黑龍江水利期刊,第一卷,第六期,第39-42頁,2015。
    25. Ahn, J.K., Park, D., and Yoo, J.K., “Estimation of damping ratio of rock mass for numerical simulation of blast induced vibration propagation.” Proceedings, The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Japanese Geotechnical Society Special Publication, pp. 1589-1592, 2015.
    26. ASTM D4428/D4428M, “Standard test methods for crosshole seismic testing.” ASTM, pp. 1-7, 2014.
    27. Atkinson, J.H., and Sallfors, G., “Experimental determination of soil properties.” Proceedings of the 10th European Conference on Soil Mechanics, Florence, Vol. 3, pp. 915-956, 1991.
    28. Butler, D.K., and Curro, J.R., Jr., “Crosshole seismic testing-procedures and pitfalls.” Geophysics, Vol. 46, No. 1, pp. 23-29, 1981.
    29. Desideri, F.S., “Measurement and estimation of seismic attenuation for near-surface site characterization.” Ph. D. Thesis, The University of Sapienza at Roma, 2018.
    30. Desideri, F.S., Cercato, M., “Estimation of near-surface seismic attenuation through VSP surveying.” 39° Convegno Nazionale del
    Gruppo Nazionale di Geofisica della Terra Solida, pp.394-398, 2018.
    31. Hamilton, E.L., “Compressional-wave attenuation in marine sediments.” Geophysics, Vol. 37, Issue 4, pp.573-705, 1972.
    32. Hoar, R.J., “Field measurement of seismic wave velocity and attenuation for dynamic analyses.” Ph. D. Thesis, The University of Texas at Austin, Austin, Texas, 1982.
    33. Hwang,S., Menq, F., Stokoe, II, K.H., Lee, R.C., and Roberts, J.N., “Advanced Data Analysis of Downhole Seismic Records.” Geotechnical Earthquake Engineering and Soil Dynamics V GSP 291, pp. 227-236, 2018.
    34. Jamiolkowski, M., LoPresti, D.C. F., and Pallara, O., “Role of in-situ testing in geotechnical earthquake engineering.” 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 1523-1546, St. Louis, Missouri, 1995.
    35. Johnston, D.H., Toksoz, M.N., and Timur, A., “Attenuation of seismic waves in dry and saturated rocks.” Geophysics, Vol.44, No. 4, pp. 691-707, 1979.
    36. Karl, L., Haegeman, W., and Degrande, G., “Determination of the material damping ratio and the shear wave velocity with the seismic cone penetration test.” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 1111-1126, 2006.
    37. Kurtulus, C., and Sert¸celik, F., “Attenuation measurements on shallow seismic refraction data in the Kocaeli region, Turkey.” Journal of Geophysics and Engineering, Vol. 7, Issue 3, pp. 257-266, 2010.
    38. McDonal, F.J., Angona, F.A., Mills, R.L., Sengbush, R.L., Van Nostrand, R.G., and White, J. E., “Attenuation of shear and compressional waves in pierre shale.” Geophysics, Vol. 23, No. 3, pp. 421-439, 1958.
    39. Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.M., Wavelet toolbox: for use with MATLAB, Mathworks, 2015.
    40. Mok, Y.J., “Analytical and experimental studies of borehole seismic methods.” Ph. D. Thesis, The University of Texas at Austin, Austin, Texas, 1987.
    41. O’Connell, R.J., and Budiansky, B., “Measures of dissipation in viscoelastic media.” Geophysical Research Letter, Vol. 5, No. 1, pp. 5-8, 1978.
    42. Patel, N.S., “Generation and ttenuation of seismic waves in downhole testing.” M.Sc. Thesis, The University of Texas at Austin, Texas, 1987.
    43. Redpath, B.B., Edwards, R.B., Hale, R.J., and Kintzer, F.Z., “Development of field techniques to measure damping values for near-surface rocks and soils.” URS/John A. Blume and Associates, Engineers, San Francisco, California, 1982.
    44. Richart, F.E., Jr., Hall, J.R., and Woods, R.D., Vibrations of soils and foundations, Prentice-Hall, Inc., New Jersey, 1970.
    45. Stoke, K.H., II, and Abdel-Razzak, K.G., “Shear moduli of two compacted fills.” Proceedings of the Conference on In Situ Measurement of Soil Properties, ASCE, Vol. I, Raleigh, NC, pp. 442-449, 1975.
    46. SW-AJA, “Soil behavior under earthquake loading conditions, state of the art evaluation of soil characteristics for seismic response analyses: prepared under subcontract.” No. 3354, Union Carbide Corp, for U.S. Atomic Energy Commission Contract No. W-7405-eng-26, January, 1972.
    47. Vucetic, M., “Cyclic threshold shear strains in soils.” Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228, 1994.
    48. Wang, Y.H., Yan, W.M., and Lo, K.F., “Damping-ratio measurements by the spectral-ratio method.” Canadian Geotechnical Journal, Vol. 43, pp. 1180-1194, 2006.
    49. Yang, Y.K., “An experimental study of dynamic soil property measurements with embedded geophones.” M. Sc. Thesis, The University of Texas at Austin, Austin, Texas, 1993.

    下載圖示 校內:2023-08-02公開
    校外:2023-08-02公開
    QR CODE