| 研究生: |
利宗倫 Li, Tzung-Luen |
|---|---|
| 論文名稱: |
硫化物量子點敏化光化學電極之研究 Sulfide Quantum Dots as Sensitizers for Photochemical Electrodes |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 光電化學電池 、分解水 、CuInS2 量子點 、量子點敏化太陽能電池 、溶熱法 、硫化鎘 、二氧化鈦敏化 、硫化銅 、太陽能轉換 、連續離子吸附反應 、量子侷限效應 |
| 外文關鍵詞: | Photoelectrochemical cells, Water decomposition, CuInS2 quantum dots, Quantum dot-sensitized solar cell, Solvothermal, CdS, TiO2 sensitization, CuS, Solar energy conversion, Successive ionic layer adsorption and reaction, Quantum confinement effect |
| 相關次數: | 點閱:147 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子點敏化太陽能電池的光電極是決定電池效能的關鍵元件。光電極上之半導體量子點敏化劑必須具有足夠高的導電帶位置,使光電子能快速注入二氧化鈦薄膜中,並具有寬廣的太陽光吸收光譜。基於此點,I-III-VI族CuInS2量子點其塊材能隙為1.5 eV,而且由於量子侷限效應,其導電帶位置處於更高的能階位置。因此,相當適合作為二氧化鈦光電極之敏化劑。此外,首次應用於二氧化鈦光電極的CuInS2量子點/CdS 共敏化劑,在分解水和量子點敏化太陽能電池的應用上,具有相當好的效能。
本論文分為三個主題: 1.以溶液法製備高品質CuInS2量子點作為二氧化鈦光電極之敏化劑; 2.CuInS2量子點外圍披覆CdS作為二氧化鈦光電極之高效能共敏化劑並應用於分解水光電化學電池上; 3.以CuInS2量子點/CdS為共敏化劑之高效能敏化太陽能電池。
第一部分,我們利用溶熱法於壓力鍋中合成CuInS2量子點。以氯化亞銅、氯化銦和硫為原料,其中銅/銦/硫的劑量比為1/1/100。利用硫過量的反應條件,能使CuInS2於較低的反應溫度下瞬間成核。於反應溫度110-150 ℃下反應一小時的CuInS2量子點,其元素比例Cu : In : S為1.1 : 1.0 : 2.1,粒子尺寸為3.5-4.3奈米,並具有均勻的粒徑分布(7-11%)。CuInS2量子點在吸收光譜上展現強烈的量子侷限效應。其螢光光譜偵測到比一般文獻上較高的螢光能量,推測為激發態電子由量子化之導電帶能階和價電帶之電洞結合所造成。CuInS2量子點敏化之二氧化鈦光電極於AM 1.5G模擬太陽光照射下(100 mW cm-2),以Na2S/Na2SO3水溶液為電解質,其分解水之光電流為 2 mA cm-2。
在第二部分中,我們發現CuInS2量子點/CdS共敏化之二氧化鈦薄膜可以形成一高效能光電極。在此光電極中,溶熱法合成之CuInS2量子點(粒徑為3.5和4.3奈米),先以雙功能性連接分子將其吸附於二氧化鈦電極上,接著以連續離子吸附反應法將CdS沉積於電極外圍。CuInS2量子點具有高導電帶位置,能有效將光電子注入二氧化鈦中。沉積CdS能完整覆蓋電極表面而有效抑制電子的再結合,並緩解CuInS2量子點中的量子侷限效應,使3.5和4.3奈米的量子點其能隙值分別由2.10減小到1.80 eV和由1.94減小到1.76 eV。於AM 1.5G模擬太陽光照射下(100 mW cm-2),此光電極展現16 mA cm-2的分解水光電流。在沉積CdS後,發現由CuInS2量子點貢獻之光電流,增加幅度超過100%。此大幅增益是由於CdS能使CuInS2量子點吸收光譜往長波長延伸,並能夠有效促進量子點中之電荷分離。
第三部分將此高效能光電極沉積ZnS鈍化層後,以polysulfide為電解質,和CuS相對電極組裝成一高效率量子點敏化太陽能電池。此CuS相對電極是以連續溶液塗佈反應法製備,對polysulfide電解質具有低電荷傳遞阻力。於AM 1.5G模擬太陽光照射下(100 mW cm-2),此太陽電池之短路電流為16.9 mA cm-2,開環電壓為0.56 V,填充因子為0.45,光電轉換效率為4.2%。其IPCE應答波長起始於約800 nm,於510 nm 之IPCE值可達到約80%。由於共敏化劑高度覆蓋二氧化鈦電極表面,能有效抑制光電子之再結合並增加電極中電子之壽命,因此具有高開環電壓。此太陽電池具有高短路電流和開環電壓,顯示此CuInS2量子點/CdS共敏化結構具有高度潛力,可以超越其他類型敏化劑。
The photoelectrode is a key component determining the efficiency in quantum dot-sensitized solar cell (QDSSC). The semiconductor QD sensitizer on the photoelectrode must have sufficiently high conduction band edge for rapid electron injection into TiO2, and wide absorption characteristics in the solar spectrum. Based on these perspectives, I-III-VI type CuInS2 QDs having bulk bandgap energy of 1.5 eV and a sufficiently high conduction band edge due to quantum confinement effect is a suitable QD sensitizer for TiO2 photoelectrode. In addition, the CuInS2-QDs/CdS heterostructural co-sensitizer, first employed in sensitizing TiO2, shows high performances in photoelectrochemical cells for both water decomposition and QDSSC.
This dissertation includes three parts: 1. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes; 2. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells; 3. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure.
In the first part, we synthesize colloidal CuInS2 quantum dots (QDs) by solvothermal method for use as sensitizers for photoelectrochemical cells. The synthesis is conducted in an autoclave containing CuCl, InCl3, and S at a Cu/In/S ratio of 1/1/100. This highly sulfur-excess environment leads to burst nucleation of CuInS2 at relatively low temperatures. For synthesis conducted at 110–150 ℃ for 1 h, the atomic ratio of the CuInS2 products is Cu:In:S = 1.1:1.0:2.1 and the particle size increases with the temperature from 3.5 to 4.3 nm, with a narrow size distribution within 7–11%. The as-prepared colloidal CuInS2 exhibits the quantum confinement effect in the optical absorption spectra. The photoluminescence emission of the resulting CuInS2 QDs has high energy, which may result from excited electrons falling from quantized levels to the ground states. Under illumination of simulated AM 1.5G at one sun intensity, the CuInS2-sensitized TiO2 electrodes in aqueous sulfide/sulfite electrolyte show an encouraging photocurrent of approximately 2 mA cm-2 in water decomposition.
The second part reports on a high-performance photoelectrode consisting of a nanocrystalline TiO2 film co-sensitized with CuInS2 QDs and CdS layers. In this photoelectrode, solvothermally synthesized CuInS2 QDs, monodispersed at sizes of 3.5 and 4.3 nm, are attached to a TiO2 substrate by means of a bifunctional linker, and followed by an in-situ growth of CdS by successive ionic layer adsorption and reaction. The QDs has a high-level conduction band for the efficient injection of electrons into TiO2. The CdS coating provides high surface coverage to prevent interfacial recombination and releases the quantum confinement of the QDs, resulting in band gap reduction from 2.10-1.80 eV and 1.94-1.76 eV for the 3.5 and 4.3 nm QDs, respectively. With AM 1.5G illumination at 100 mW cm-2, this heterostructural electrode exhibits a saturated photocurrent as high as 16 mA cm-2 in a polysulfide solution. Systematic analysis suggests that the photocurrent resulting from the CuInS2 QDs is increased by more than 100%, thanks to the CdS coating. This coating extends the absorption spectra of the QDs and facilitates charge separation by scavenging photogenerated holes in the valence band of the QDs.
The third part reports a high-performance quantum dot-sensitized solar cell (QDSSC), which consists of a TiO2/CuInS2-QDs/CdS/ZnS photoanode, a polysulfide electrolyte, and a CuS counter electrode. The sensitization process for the TiO2 substrate is identical to that in the second part except for a final ZnS passivation layer. The CuS counter electrode, prepared via successive ionic solution coating and reaction, has a small charge transfer resistance in the polysulfide electrolyte. The QDSSC exhibits a short-circuit photocurrent (Jsc) of 16.9 mA cm-2, an open-circuit photovoltage (Voc) of 0.56 V, a fill factor of 0.45, and a conversion efficiency of 4.2% under one-sun illumination. The heterojunction between the CuInS2 QDs and CdS extends both the optical absorption and incident photon conversion efficiency (IPCE) spectra of the cell to a longer wavelength of approximately 800 nm, and provides an IPCE of nearly 80% at 510 nm. The high TiO2 surface coverage of the sensitizers suppresses recombination of the photogenerated electrons. This results in a longer lifetime for the electrons, and therefore, the high Voc value. The notably high Jsc and Voc values demonstrate that this sensitization strategy, which exploits the quantum confinement reduction and other synergistic effects of the CuInS2-QDs/CdS/ZnS heterostructure, can potentially outperform those of other QDSSCs.
Chapter 1
1.S. Rühle, M. Shalom and A. Zaban, Chem. Phys. Chem., 2010, 11, 2290.
2.http://www.ecofriend.com/entry/future-perfect-plastic-photovoltaics-to-change-the-way-we-look-at-plastic/.
3.http://johnbrehmer.ifunnyblog.com/2cellpvarray/.
4.http://en.wikipedia.org/wiki/P-n_junction.
5.http://www.nrel.gov/ncpv/.
6.C. Mitsugi, A. Harumi and F. Kenzo, Int. J. Hydrogen Energy, 1998, 23, 159.
7.T. Nejat Veziroglu, Int. J. Hydrogen Energy, 1998, 23, 1077.
8.The Economist Technology, Quarterly, March 25, 2001. p.29.
9.A. Fujishima and K.Honda, Nature, 1972, 238, 37.
10.A. J. Nozik, Physica E, 2002, 14, 115.
11.P. V. Kamat, J. Phys. Chem. C, 2008, 112, 18737.
12.I. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras and J. Bisquert, J. Phys. Chem. C, 2010, 114, 6755.
13.I. Mora-Seró, D. Gross, T. Mittereder, A. A. Lutich, A. S. Susha, T. Dittrich, A. Belaidi, R. Caballero, F. Langa, J. Bisquert and A. L. Rogach, Small, 2010, 6, 221.
Chapter 2
1.http://en.wikipedia.org/wiki/N-type_semiconductor.
2.C. Kittel and H. Kroemer, Thermal Physics (2nd Edition), W. H. Freeman, p. 357.
3.B. G. Streetman and S. Banerjee, Solid State Electronic Devices, PEARSON, Chapter 3.
4.S. Licht, Semiconductor Electrodes and Photoelectrochemistry, WILEY-VCH, p. 292.
5.C. L. Choi and A. P. Alivisatos, Annu. Rev. Phys. Chem., 2010, 61, 369.
6.A. P. Alivisatos, J. Phys. Chem., 1996, 100, 13226.
7.J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Inc. 1971.
8.http://en.wikipedia.org/wiki/Exciton.
9.J. H. Simmons and K. S. Potter, Optical Materials, Academic Press, San Diego, 2000.
10.T. J. Bukowski and J. H. Simmons, Crit. Rev. Solid State Mater. Sci., 2002, 27, 119.
11.http://en.wikipedia.org/wiki/Schrödinger_equation.
12.G. Zlateva, Z. Zhelev, R. Bakalova and I. Kanno, Inorg. Chem., 2007, 46, 6212.
13.A. J. Nozik, Phys. E, 2002, 14, 115.
14.R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 92, 186601.
15.R. D. Schaller, M. Sykora, J. M. Pietryga and V. I. Klimov, Nano Lett., 2006, 6, 424.
16.I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385.
17.N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, J. Bisquert and R. Gomez, J. Phys. Chem. C, 2009, 113, 4208.
18.S. Gorer and G. Hodes, J. Phys. Chem., 1994, 98, 5338.
19.H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221.
20.S. J. Moon, Y. Itzhaik, J. H. Yum, S. M Zakeeruddin, G. Hodes, and M. Grätzel, J. Phys. Chem. Lett., 2010, 1, 1524.
21.M. H. Deng, Q. X. Zhang, S. Q. Huang, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, Q. B. Meng, Nano. Res. Lett., 2010, 5, 986.
22.J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 2007, 46, 4630.
23.J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang and R. S. Liu, Appl. Phys. Lett., 2009, 94, 153115.
24.A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007.
25.R. S. Dibbell and D. F. Watson, J. Phys. Chem. C, 2009, 113, 3139.
26.M. Zayats, A. B. Kharitonov, S. P. Pogorelova, O. Lioubashevski, E. Katz and I. Willner, J. Am. Chem. Soc., 2003, 125, 16006.
27.I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385.
28.Y. Shen, J. Bao, N. Dai, J. Wu, F. Gu, J. C. Tao and J. C. Zhang, Appl. Surf. Sci., 2009, 255, 3908.
29.P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 2006, 110, 25451.
30.A. Zaban, O. I. Micic, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153.
31.N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert and R. Gómez, J. Phys. Chem. C, 2009, 113, 4208.
32.http://en.wikipedia.org/wiki/Solar_spectrum.
33.http://www.nrel.gov/ (National Renewable Energy Laboratory Web).
34.D. Tryk, Electrochimica Acta, 2000, 45, 2363.
35.J. A. Turner, Science, 1999, 285, 1493.
36.A. E. Becquerel, C. R. Acad. Sci., 1839, 9, 561.
37.B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
38.S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456.
39.A. Kay and M. Grätzel, Sol. Mater. Sol. Cell, 1996, 44, 99.
40.S. Emin, S. P. Singh, L. Han, N. Satoh and A. Islam, Solar Energy, 2011, 85, 1264.
41.M. Shalom, S. Dor, S. Rühle, L. Grinis and A. Zaban, J. Phys. Chem. C, 2009, 113, 3895.
42.S. Rühle, M. Shalom and A. Zaban, Chem. Phys. Chem., 2010, 11, 2290.
43.S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, J. Am. Chem. Soc., 2002, 124, 11215.
44.Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, Chem. Lett., 2007, 36, 88.
Chapter 3
1.C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
2.N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana and X. Peng, J. Am. Chem. Soc., 2007, 129, 9500.
3.B. Blackman, D. M. Battaglia, T. D. Mishima, M. B. Johnson and X. Peng, Chem. Mater., 2007, 19, 3815.
4.G. Zlateva, Z. Zhelev, R. Bakalova and I. Kanno, Inorg. Chem., 2007, 46, 6212.
5.S. T. Selvan, C. Bullen, M. Ashokkumar and P. Mulvaney, Adv. Mater., 2001, 13, 985.
6.C. de Mello Donegá, P. Liljeroth and D. Vanmaekelbergh, Small, 2005, 1, 1152.
7.J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson and A. J. Nozik, J. Am. Chem. Soc., 2006, 128, 3241.
8.X. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, V. Sukhovatkin, E. H. Sargent and E. Kumacheva, Langmuir, 2005, 21, 1086.
9.O. I. Mićić, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs and N. Peyghambarian, J. Phys. Chem., 1995, 99, 7754.
10.A. Henglein, Chem. Rev., 1989, 89, 1861.
11.M. L. Steigerwald and L. E. Brus, Acc. Chem. Res., 1990, 23, 183.
12.H. Weller, Adv. Mater., 1993, 5, 88.
13.A. P. Alivisatos, J. Phys. Chem., 1996, 100, 13226.
14.Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525.
15.N. Chestnoy, R. Hull and L. E. Brus, J. Chem. Phys., 1986, 85, 2237.
16.R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
17.L. S. Li, N. Pradhan, Y. Wang and X. Peng, Nano Lett., 2004, 4, 2261.
18.W. W. Yu, Y. A. Wang and X. Peng, Chem. Mater., 2003, 15, 4300.
19.W. W. Yu and X. Peng, Angew. Chem. Int. Ed., 2002, 41, 2368.
20.I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan and Z. Hens, Chem. Mater., 2007, 19, 6101.
21.Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai and Y. Baba, Anal. Chem., 2006, 78, 321.
22.B. N. G. Giepmans, S. R. Adams, M. H. Ellisman and R. Y. Tsien, Science, 2006, 312, 217.
23.I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nature Mater., 2005, 4, 435.
24.D. Shi, Y. Guo, Z. Dong, J. Lian, W. Wang, G. Liu, L. Wang and R. C. Ewing, Adv. Mater., 2007, 19, 4033.
25.M. C. Schlamp, X. Peng and A. P. Alivisatos, J. Appl. Phys., 1997, 82, 5837.
26.H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi and M. F. Rubner, J. Appl. Phys., 1998,83,7965. 27.N. Tessler, V. Medvedev, M. Kazes, S. Kan and U. Banin, Science, 2002, 295, 1506.
28.X. Fang, Y. Bando, U. K. Gautam, T. Zhai, S. Gradečak and D. Golberg, J. Mater. Chem., 2009, 19, 5683.
29.A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153.
30.U. K. Gautam, Y. Bando, L. Bourgeois, X. Fang, P. M. F. J. Costa, J. Zhan and D. Golberg, J. Mater. Chem., 2009, 19, 4414.
31.X. Fang, U. K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi and D. Golberg, J. Phys. Chem. C, 2008, 112, 4735.
32.K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Nano Lett., 2007, 7, 1793.
33.R. P. Raffaelle, S. L. Castro, A. F. Hepp and S. G. Bailey, Prog. Photovolt. Res. Appl., 2002, 10, 433.
34.E. Arici, N. S. Sariciftci and D. Meissner, Adv. Funct. Mater., 2003, 13, 165.
35.J. Klaer, J. Bruns, R. Henninger, K. Siemer, R. Klenk, K. Ellmer and D. Bräunig, Semicond. Sci. Technol., 1998, 13, 1456.
36.K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk and D. Bräunig, Sol. Energy Mater. Sol. Cells, 2001, 67, 159.
37.K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Prog. Photovolt. Res. Appl., 2003, 11, 225.
38.M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. Photovolt. Res. Appl., 2005, 13, 209.
39.W. Du, X. Qian, J. Yin and Q. Gong, Chem. Eur. J., 2007, 13, 8840.
40.C.-H. Fischer, H.-J. Muffler, M. Bär, T. Kropp, A. Schönmann, S. Fiechter, G. Barbar and M. C. Lux-Steiner, J. Phys. Chem. B, 2003, 107, 7516.
41.R. O’Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang and M. Grätzel, Adv. Funct. Mater., 2006, 16, 1566.
42.S. S. Lee, K. W. Seo, J. P. Park, S. K. Kim and I.-W. Shim, Inorg. Chem., 2007, 46, 1013.
43.Y. B. He, T. Krämer, A. Polity, M. Hardt and B. K. Meyer, Thin Solid Films, 2003, 431–432, 126.
44.S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 2003, 15, 3142.
45.S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, J. Phys. Chem. B, 2004, 108, 12429.
46.T. Kino, T. Kuzuya, K. Itoh, K. Sumiyama, T. Wakamatsu and M. Ichidate, Mater. Trans., 2008, 49, 435.
47.D. P. Dutta and G. Sharma, Mater. Lett., 2006, 60, 2395.
48.J. S. Gardner, E. Shurdha, C. Wang, L. D. Lau, R. G. Rodriguez and J. J. Pak, J. Nanopart. Res., 2008, 10, 633.
49.J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T. R. Fletcher, M. Williams, C. Wang and M. G. Norton, Nano Lett., 2006, 6, 1218.
50.Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou and X. Liu, Inorg. Chem., 2000, 39, 1606.
51.Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39, 2964.
52.Y. Jiang, Y. Wu, S. Yuan and B. Xie, J. Mater. Res., 2001, 16, 2805.
53.J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, J. Mater. Chem., 2001, 11, 1417.
54.Q. Wei and J. Mu, J. Disper. Sci. Technol., 2005, 26, 555.
55.H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki and H. Maeda, Chem. Mater., 2006, 18, 3330.
56.J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 2007, 46, 4630.
57.J. Jiu, F. Wang, M. Sakamoto, J. Takao and M. Adachi, Sol. Energy Mater. Sol. Cells, 2005, 87, 77.
58.M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc., 2004, 126, 14943.
59.W. Yu, L. H. Qu, W. Z. Guo and X. Peng, Chem. Mater., 2003, 15, 2854.
60.A. J. Nozik, Inorg. Chem., 2005, 44, 6893.
61.G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao and H. T. Chang, J. Mater. Chem., 2009, 19, 2349.
62.S. F. Wuister, C. de Mello Donegá and A. Meijerink, J. Phys. Chem. B, 2004, 108, 17393.
63.P. T. Hsiao, K. P. Wang, C. W. Cheng and H. Teng, J. Photochem. Photobiol. A, 2007, 188, 19.
64.S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, Prog. Photovolt. Res. Appl., 2007, 15, 603.
65.A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007.
66.L. Qu, Z. A. Peng and X. Peng, Nano Lett., 2001, 1, 333.
67.J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson and X. Peng, J. Am. Chem. Soc., 2003, 125, 12567.
68.D. Battaglia and X. Peng, Nano Lett., 2002, 2, 1027.
69.C. Czekelius, M. Hilgendorff, L. Spanhel, I. Bedja, M. Lerch, G. Muller, U. Bloeck, D. S. Su and M. Giersig, Adv. Mater., 1999, 11, 643.
70.P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240.
71.H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang and Y. Li, Nanotechnology, 2007, 18, 025602.
72.S. F. Wuister, C. de Mello Donegá and A. Meijerink, J. Phys. Chem. B, 2004, 108, 17393.
73.A. M. Munro, I. Jen-La Plante, M. S. Ng and D. S. Ginger, J. Phys. Chem. C, 2007, 111, 6220.
74.C. Bullen and P. Mulvaney, Langmuir, 2006, 22, 3007.
75.R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
76.S. B. Zhang, S.-H. Wei and A. Zunger, J. Appl. Phys., 1998, 83, 3192.
77.C.-H. Fischer and A. Henglein, J. Phys. Chem., 1989, 93, 5578.
78.V. V. Ison, A. Ranga Rao, V. Dutta, P. K. Kulriya, D. K. Avasthi and S. K. Tripathi, J. Appl. Phys., 2009, 106, 023508.
79.S. Banerjee, S. K. Mohapatra, P. P. Das and M. Misra, Chem. Mater., 2008, 20, 6784.
80.A. Kudo, I. Tsuji and H. Kato, Chem. Commun., 2002, 1958.
81.I. Tsuji, H. Kato, H. Kobayashi and A. Kudo, J. Am. Chem. Soc., 2004, 126, 13406.
82.K. P. Wang and H. Teng, Appl. Phys. Lett., 2007, 91, 173102.
83.P. T. Hsiao and H. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
Chapter 4
1.(a) J. A. Turner, Science, 1999, 285, 687; (b) M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446.
2.(a) J. Nowotny, C. C. Sorrell, L. R. Sheppard and T. Bak, Int. J. Hydrogen Energy, 2005, 30, 521; (b) C. C. Tsai and H. Teng, Appl. Surf. Sci., 2008, 254, 4912; (c) T. Kurata, Y. Mori, S. Isoda, J. Jiu, K. Tsuchiya, F. Uchida and M. Adachi, Curr. Nanosci., 2010, 6, 269; (d) T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando and D. Golberg, Adv. Mater., 2010, 22, 4530.
3.(a) P. V. Kamat, J. Phys. Chem. C, 2007, 111, 2834; (b) C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460; (c) S. Banerjee, S. K. Mohapatra and M. Misra, Chem. Commun., 2009, 7137.
4.(a) T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255; (b) C.C. Hu and H. Teng, J. Phys. Chem. C, 2010, 114, 20100; (c) S. K. Mohapatra, S. E. John, S. Banerjee and M. Misra, Chem. Mater., 2009, 21, 3048.
5.(a) M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc., 2004, 126, 14943; (b) C. C. Hu and H. Teng, J. Catal., 2010, 272, 1; (c) X. Fang, Y. Bando, M. Liao, T. Zhai, U. K. Gautam, L. Li, Y. Koide and D. Golberg, Adv. Funct. Mater., 2010, 20, 500.
6.A. Fujishima and K. Honda, Nature, 1972, 238, 37.
7.D. R. Baker and P. V. Kamat, Adv. Funct. Mater., 2009, 19, 805.
8.W. T Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, J. Am. Chem. Soc., 2008, 130, 1124.
9.H. Zhang, X. Quan, S. Chen, H. Yu and N. Ma, Chem. Mater., 2009, 21, 3090.
10.K. Shin, S. Seok, S. H. Im and J. H. Park, Chem. Commun., 2010, 46, 2385.
11.R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem., 1994, 98, 3183.
12.R. Plass, S. Pelet, J. Krueger, M. Grätzel and U. Bach, J. Phys. Chem. B, 2002, 106, 7578.
13.P. Hoyer and R. Könenkamp, Appl. Phys. Lett., 1995, 66, 349.
14.T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.
15.I. Kaiser, K. Ernst, Ch.-H. Fischer, R. Könenkamp, C. Rost, I. Sieber and M.-Ch. Lux-Steiner, Sol. Energy Mater. Sol. Cells, 2001, 67, 89.
16.(a) K. P. Wang and H. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489; (b) J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, Int. J. Hydrogen Energy, 2007, 32, 2609; (c) P. T. Hsiao and H. Teng, J. Am. Ceram. Soc., 2009, 92, 888; (d) K. P. Wang and H. Teng, Appl. Phys. Lett., 2007, 91, 173102; (e) J. Jiu, F. Wang, M. Sakamoto, J. Takao and M. Adachi, Sol. Energy Mater. Sol. Cells, 2005, 87, 77; (f) C. C. Tsai and H. Teng, Chem. Mater., 2006, 18, 367; (g) S. Banerjee, M. Misra, S. K. Mohapatra, C. Howard, S. K. Mohapatra and S. K. Kamilla, Nanotechnology, 2010, 21, 145201.
17.(a) P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762; (b) C. C. Tsai, Y. Y. Chu and H. Teng, Thin Solid Films, 2010, 519, 662; (c) S.-C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, Catal. Today, 2000, 58, 125; (d) P. T. Hsiao, M. D. Lu, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 15625; (e) C. C. Tsai and H. Teng, Langmuir, 2008, 24, 3434; (f) J. Jiu, S. Isoda, M. Adachi and F. Wang, J. Photochem. Photobiol. A, 2007, 189, 314.
18.O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, J. Photochem. Photobiol. A, 2006, 181, 306.
19.L. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, Appl. Phys. Lett., 2007, 91, 023116.
20.H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221.
21.Y. L. Lee, C. F. Chi and S. Y. Liau, Chem. Mater., 2010, 22, 922.
22.R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
23.L. S. Li, N. Pradhan, Y. Wang and X. Peng, Nano Lett., 2004, 4, 2261.
24.I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan and Z. Hens, Chem. Mater., 2007, 19, 6101.
25.A. J. Nozik, Chem. Phys. Lett., 2008, 457, 3.
26.I. Robel, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2007, 129, 4136.
27.B. Carlson, K. Leschkies, E. S. Aydil and X.-Y. Zhu, J. Phys. Chem. C, 2008, 112, 8419.
28.I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda and J. Bisquert, Acc. Chem. Res., 2009, 42, 1848.
29.I. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras and J. Bisquert, J. Phys. Chem. C, 2010, 114, 6755.
30.I. Mora-Seró, D. Gross, T. Mittereder, A. A. Lutich, A. S. Susha, T. Dittrich, A. Belaidi, R. Caballero, F. Langa, J. Bisquert and A. L. Rogach, Small, 2010, 6, 221.
31.Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 84304.
32.S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
33.K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Nano Lett., 2007, 7, 1793.
34.P. T. Hsiao, K. P. Wang, C. W. Cheng and H. Teng, J. Photochem. Photobiol. A, 2007, 188, 19.
35.S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, Prog. Photovolt. Res. Appl., 2007, 15, 603.
36.A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007.
37.N. Tesster, V. Medvedev, M. Kazes, S. Kan and U. Banin, Science, 2002, 295, 1506.
38.P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2002, 2, 781.
39.S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner and C. S. Yun, Chem. Mater., 2002, 14, 1576.
40.L. Manna, E. C. Scher, L.-S. Li and A. P. Alivisatos, J. Am. Chem. Soc., 2002, 124, 7136.
41.Y. Cao and U. Banin, J. Am. Chem. Soc., 2000, 122, 9692.
42.D. A. Bussian, S. A. Crooker, M. Yin, M. Brynda, A. L. Efros and V. I. Klimov, Nature Mater., 2009, 8, 35.
43.S. Banerjee, S. K. Mohapatra, P. P. Das and M. Misra, Chem. Mater., 2008, 20, 6784.
44.A. Kudo, I. Tsuji and H. Kato, Chem. Commun., 2002, 1958.
45.I. Tsuji, H. Kato, H. Kobayashi and A. Kudo, J. Am. Chem. Soc., 2004, 126, 13406.
46.A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
47.A. Kay and M. Grätzel, Chem. Mater., 2002, 14, 2930.
48.E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc., 2003, 125, 475.
49.P. A. Sant and P. V. Kamat, Phys. Chem. Chem. Phys., 2002, 4, 198.
50.P.-T. Hsiao and H. Teng, J. Taiwan Inst. Chem. Eng., 2010, 41, 676.
51.S. B. Zhang, S.-H. Wei and A. Zunger, J. Appl. Phys., 1998, 83, 3192.
52.C.-F. Chi, Y.-L. Lee and H.-S. Weng, Nanotechnology, 2008, 19, 125704.
53.J. Bai, J. Li, Y. Liu, B. Zhou and W. Cai, Appl. Catal. B Environ., 2010, 95, 408.
54.H. J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, Langmuir, 2009, 25, 7602.
55.G. Larramona, C. Choné, A. Jacob, D. Sakakura, B. Delatouche, D. Péré, X. Cieren, M. Nagino and R. Bayon, Chem. Mater., 2006, 18, 1688.
56.H. J. Lee, H. C. Leventis, S.-J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nüesch, T. Geiger, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Adv. Funct. Mater., 2009, 19, 2735.
57.G. L. Martinez, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electron. Mater., 2000, 29, 325.
58.V. I. Klimov, J. Phys. Chem. B, 2000, 104, 6112.
59.G. Hodes, J. Phys. Chem. C, 2008, 112, 17778.
60.I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385.
61.(a) G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 2005, 5, 191; (b) O. K. Varghese, C. A. Grimes, Sol. Energy Mater. Sol. Cells, 2008, 92, 374.
Chapter 5
1.P. V. Kamat, J. Phys. Chem. C, 2007, 111, 2834–2860.
2.T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255–2262.
3.C. C. Hu and H. Teng, J. Phys. Chem. C, 2010, 114, 20100–20106.
4.K. P. Wang and H. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489–9496.
5.P. T. Hsiao, M. D. Lu, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 15625–15632.
6.C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103–3109.
7.A. J. Nozik, Physica E, 2002, 14, 115–120.
8.P. V. Kamat, J. Phys. Chem. C, 2008, 112, 18737–18753.
9.G. Hodes, J. Phys. Chem. C, 2008, 112, 17778–17787.
10.W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 2002, 295, 2425–2427.
11.R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 92, 186601.
12.M. Shalom, I. Hod, Z. Tachan, S. Buhbut, S. Tirosh and A. Zaban, Energy Environ. Sci., 2011, 4, 1874–1878.
13.S. H. Im, H. J. Kim, S. W. Kim, S. W. Kim and S. I. Seok, Energy Environ. Sci., 2011, advance article, DOI: 10.1039/C1EE01774H.
14.I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda and J. Bisquert, Acc. Chem. Res., 2009, 42, 1848–1857.
15.S. Buhbut, S. Itzhakov, E. Tauber, M. Shalom, I. Hod, T. Geiger, Y. Garini, D. Oron and A. Zaban, ACS Nano, 2010, 4, 1293–1298.
16.L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, J. Phys. Chem. B, 2003, 107, 8378–8381.
17.J. H. Bang and P. V. Kamat, ACS Nano, 2009, 3, 1467–1476.
18.S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
19.N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert and R. Gómez, J. Phys. Chem. C, 2009, 113, 4208–4214.
20.A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, ACS Nano, 2010, 4, 5962–5968.
21.H. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221–4227.
22.C. H. Chang and Y. L. Lee, Appl. Phys. Lett., 2007, 91, 053503.
23.Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604–609.
24.D. R. Baker and P. V. Kamat, Adv. Funct. Mater., 2009, 19, 805–811.
25.H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 2004, 27, 85–111.
26.R. Vogel, K. Pohl and H. Weller, Chem. Phys. Lett., 1990, 174, 241–245.
27.Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304.
28.S. Gorer and G. Hodes, J. Phys. Chem., 1994, 98, 5338–5346.
29.M. Shalom, S. Dor, S. Ruhle, L. Grinis and A. Zaban, J. Phys. Chem. C, 2009, 113, 3895–3898.
30.L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, Appl. Phys. Lett., 2007, 91, 023116.
31.M. Shalom, S. Ruhle, I. Hod, S. Yahav and A. Zaban, J. Am. Chem. Soc., 2009, 131, 9876–9877.
32.A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153–3156.
33.P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 2006, 110, 25451–25454.
34.A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee and G. J. Wang, Electrochem. Commun., 2010, 12, 1158–1160.
35.H. J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. Il Seok, M. Grätzel and M. K. Nazeeruddin, Langmuir, 2009, 25, 7602–7608.
36.K. T. Kuo, D. M. Liu, S. Y. Chen and C. C. Lin, J. Mater. Chem., 2009, 19, 6780–6788.
37.T. L. Li, Y. L. Lee and H. Teng, J. Mater. Chem., 2011, 21, 5089–5098.
38.S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, J. Am. Chem. Soc., 2002, 124, 11215–11222.
39.H. J. Lee, J.-H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. Il Seok, M. Grätzel and M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600–11608.
40.Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, Chem. Lett., 2007, 36, 88–89.
41.L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, J. Am. Chem. Soc., 2011, 133, 8458–8460.
42.G. Hodes, J. Manassen and D. Cahen, J. Electrochem. Soc., 1980, 127, 544–549.
43.B. Miller and A. Heller, Nature, 1976, 262, 680–681.
44.Z. Yang, C. Y. Chen, C. W. Liu and H. T. Chang, Chem. Commun., 2010, 46, 5485–5487.
45.Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li and H. T. Chang, Adv. Energy Mater., 2011, 1, 259–264.
46.V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, ACS Nano, 2010, 4, 5783–5790.
47.S.-R. Jang, R. Vittal and K.-J. Kim, Langmuir, 2004, 20, 9807–9810.
48.K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura and K. Murata, Sol. Energy Mater. Sol. Cells, 2003, 79, 459–469.
49.T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy and M. Grätzel, J. Electrochem. Soc., 2006, 153, A2255–A2261.
50.B. Fang, S.-Q. Fan, J. H. Kim, M.-S. Kim, M. Kim, N. K. Chaudhari, J. Ko and J.-S. Yu, Langmuir, 2010, 26, 11238–11243.
51.T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656–3664.
52.K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Nano Lett., 2007, 7, 1793–1798.
53.S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, Progr. Photovolt.: Res. Appl., 2007, 15, 603–612.
54.P. T. Hsiao, K. P. Wang, C. W. Cheng and H. Teng, J. Photochem. Photobiol. A, 2007, 188, 19–24.
55.C. C. Tsai and H. Teng, Chem. Mater., 2006, 18, 367–373.
56.A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007–4015.
57.S.-Q. Fan, B. Fang, J. H. Kim, J.-J. Kim, J.-S. Yu and J. Ko, Appl. Phys. Lett., 2010, 96, 063501.
58.S.-Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J.-S. Yu and J. Ko, Langmuir, 2010, 26, 13644–13649
59.S. B. Zhang, S.-H. Wei and A. Zunger, J. Appl. Phys., 1998, 83, 3192–3196.
60.R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem., 1994, 98, 3183–3188.
61.R. H. Kore, J. S. Kulkarni and S. K. Haram, Chem. Mater., 2001, 13, 1789–1793.
62.M. Orphanou, E. Leontidis, T. K. Leodidou, P. Koutsoukos and K. C. Kyriacou, Langmuir, 2004, 20, 5605–5612.
63.A. Tang, S. Qu, K. Li, Y. Hou, F. Teng, J. Cao, Y. Wang and Z. Wang, Nanotechnology, 2010, 21, 285602.
64.M. Sam, M. R. Bayati, M. Mojtahedi and K. Janghorban, Appl. Surf. Sci., 2010, 257, 1449–1453.
65.C. D. Wagner, Discuss. Faraday Soc., 1975, 60, 291–300.
66.L. Chen, J. Chen, H. Zhou, L. Liu and H. Wan, Mater. Lett., 2007, 61, 1974–1977.
67.I. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras and J. Bisquert, J. Phys. Chem. C, 2010, 114, 6755–6761.
68.Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Phys. Chem. Chem. Phys., 2011, 13, 4659–4667.
69.H. J. Lee, J. Bang, J. Park, S. Kim and S.-M. Park, Chem. Mater., 2010, 22, 5636–5643.
70.P. T. Hsiao and H. Teng, J. Taiwan Inst. Chem. Eng., 2010, 41, 676–681.
71.Z. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z. Zhao, K. Sunahara and A. Furube, Appl. Phys. Lett., 2010, 96, 233107.