| 研究生: |
羅翊萍 Luo, Yi-Ping |
|---|---|
| 論文名稱: |
傳統訊息之仲裁式量子簽章 Arbitrated Quantum Signature of Classical Message |
| 指導教授: |
黃宗立
Hwang, Tzonelih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 量子密碼學 、仲裁式量子簽章 |
| 外文關鍵詞: | Quantum Cryptography, Arbitrated Quantum Signature |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球網際網路的發展,使得在遙遠的兩方依然可以互相通訊,而在通訊便利的環境下,卻也存在著許多安全上的漏洞,例如:竊聽及偽冒。因此資料傳輸上的安全與認證就顯得格外重要。
在傳統密碼學中,數位簽章的特性可以避免在資料傳輸中,惡意的攻擊者(或是簽章機制中不誠實的參與者)想要進行偽冒簽章的攻擊。同樣的,數位簽章也是一種認證機制,能讓簽署者不能否認自己曾簽署過合法簽章的事實。數位簽章的機制可藉由公鑰加密系統或對稱式金鑰加密系統來達成。在利用對稱式金鑰加密系統的數位簽章,由於雙方分享相同的金鑰,因此另一方可利用相同的金鑰偽冒對方簽署訊息而不被察覺,因此仲裁式簽章在對稱式金鑰加密系統中扮演著相當重要的角色。由於仲裁式簽章將藉由仲裁者的幫忙完成簽章流程,因此仲裁者在仲裁式簽章中扮演了關鍵的角色,簽章過程中所有的參與者都必須信任仲裁者簽章才能正確地運作。
但由於數位簽章系統無法偵測竊聽者的存在,且一些安全性植基於數學難題的密碼協定,已被證明可利用量子電腦在多項式時間內破解 [1],因此基於物理特性下的密碼協定是現在許多研究發展的方向。
仲裁式量子簽章是目前量子密碼學中相當重要的研究,它不但擁有數位簽章中不可偽造、不可否認的特性,在基於量子技術下,還可以檢查簽章在傳送過程中是否有竊聽者的存在。目前許多仲裁式量子簽章已被提出 [15][16][17][18][19],但其效率與安全性都有改進的空間。因此,本論文將針對簽署傳統資訊之仲裁式量子簽章進行討論,並提出目前有效率之簽署傳統資訊之仲裁式量子簽章。
The rapid technological development of modern society has enabled communication between two parties even over long distances. The convenience of such communication, however, has led to a variety of security loopholes, such as eavesdropping and counterfeit-ing. As such, secure data transmission and authentication are particularly important issues.
In cryptography, digital signature schemes are used to avoid malicious attackers (or dishonest participants in a signature mechanism) who forge signatures during data trans-mission and to ensure that a signatory cannot deny having signed a message that has a valid signature. A digital signature system can be achieved through a public key encryption system or a symmetric key encryption system. Using a symmetric key encryption system, one of two parties can use a key to counterfeit signed messages without being detected be-cause the two sides share the same key. Therefore, an arbitrated signature scheme plays an important role in the symmetric key encryption system, as it enables the success of the sig-nature scheme with the help of an arbitrator. In this case, because the arbitrator has access to the content of the message or secret information, he/she must be impartial and trusted by all involved participants.
In cryptography, digital signature schemes cannot detect the presence of eavesdrop-ping. Moreover, the security of many cryptosystems takes advantage of complex mathe-matical problems that studies have revealed can be cracked in polynomial time using a quantum search algorithm [1]. Protocol based on physical properties is currently being in-tensively examined and is the direction of future development.
The arbitrated quantum signature (AQS) scheme has recently been an important re-search topic in quantum cryptography. In addition to satisfying the security requirements of the digital signature, which include unforgeablity and undeniablity, the AQS scheme can also check for eavesdropping during the transmission on the basis of physical proper-ties. Although many AQS schemes have been proposed thus far [15][16][17][18][19], their efficiency and security still needs to be improved. This thesis will discuss the problems of existing AQS classical message schemes, and will also propose an efficient AQS scheme currently available.
[1] E. Biham, O. Bihan, D. Biron, M. Grassl and D. A. Lidar, “Grover’s quantum search algorithm for an arbitrary initial amplitude distribution,” Physical Review A, vol. 60, no. 4, pp. 2742-2745, 1999.
[2] A. Einstein, B. Podolsky, N. Rosen “Can Quantum-Mechanical Description of Physi-cal Reality Be Considered Complete?,” Physical Review, vol. 47, no. 10, pp. 777-780, 1935.
[3] J.S. Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics, vol. 1, pp. 195-200, 1964.
[4] D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger, “Bell’s theorem without inequalities,” American Journal of Physics, vol. 58, pp. 1131, 1990.
[5] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing (invited paper),” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179, Dec. 1984.
[6] C. H. Bennett, G. Brassard, C. Crépeau, and M. H. Skubiszewska, “Practical quantum oblivious transfer,” in Advances in Cryptology, CRYPTO'91, Santa Barbara, California, USA, pp. 351-366, 11-15 Aug. 1991.
[7] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Physical Review Letter, vol. 68, pp. 3121-3124, 1992.
[8] H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science, vol. 283, pp. 2050-2056, 1999.
[9] P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distri-bution protocol,” Physical Review Letter, vol. 85, no. 2, pp. 441-444, July 2000.
[10] D. Mayers, “Unconditional security in quantum cryptography,” Journal of the ACM, vol. 48, pp. 351-406, 2001.
[11] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of Modern Physics, vol. 74, pp. 145-195, 2002.
[12] S. G. Alk, “Digital Signatures: A Tutorial Survey,” Computer, 1983.
[13] G. Simmons, “Contemporary Cryptology: The Science of Information Integrity,” Pis-cataway, NJ: IEEE Press, 1992.
[14] C. Mitchell, F. Piper and P. Wild, “Digital signatures,” In [13], pp. 325.
[15] H. Lee, C. Hong, H. Kim, J. Lim and H. J. Yang, “Arbitrated quantum signature scheme with message recovery,” Physics Letters A, vol. 321, pp. 295-300, 2004.
[16] J. Wang, Q. Zhang, L.-M. Liang and C.-J. Tang, “Comment on: “Arbitrated quantum signature scheme with message recovery”,” Physics Letters A, vol. 347, pp. 262-263, 2005.
[17] J. Wang, Q. Zhang and C.-J. Tang, “Quantum signature scheme with single photons,” Optoelectronics Letters, Vol. 2, No. 3, pp. 0209-0212, 2006.
[18] Y.-G. Yang and Q.-Y. Wen, “Arbitrated quantum signature of classical messages against collective amplitude damping noise,” Optics Communications, vol. 283, no. 16, pp. 3198-3201, 2010.
[19] Y.-G. Yang and Q.-Y. Wen, “Erratum: Arbitrated quantum signature of classical mes-sages against collective amplitude damping noise (Opt. Commun. 283 (2010) 3198-3201),” Optics Communications, vol. 283, no. 19, pp. 3830, 2010.
[20] S.-K. Chong, Y.-P. Luo and T. Hwang, “On “Arbitrated quantum signature of classical messages against collective amplitude damping noise”,” Optics Communications, vol. 284, no. 4, pp. 893-895, 2011.
[21] T. Hwang, S.-K. Chong, Y.-P. Luo and T.-X. Wei, “New arbitrated quantum signature of classical messages against collective amplitude damping noise,” Optics Communi-cations, Accepted Paper to be Published, 2011.
[22] G. H. Zeng and C. H. Keitel, “Arbitrated quantum-signature scheme,” Physical Re-view A, vol. 65, no. 4, p. 042312, 2002.
[23] M. Curty and N. Lütkenhaus, “Comment on ‘Arbitrated quantum-signature scheme’,” Physical Review A, vol. 77, no. 4, p. 046301, 2008.
[24] G. Zeng, “Reply to “Comment on ‘Arbitrated quantum-signature scheme’”,” Physical Review A, vol. 78, no. 1, p. 016301, 2008.
[25] Q. Li, W. H. Chan, and D.-Y. Long, “Arbitrated quantum signature scheme using bell states,” Physical Review A, vol. 79, no. 4, p. 054307, 2009.
[26] X. Lu and D.-G. Feng, “An Arbitratated Quantum Message Signature Scheme,” In-ternational Conference on Computational and Information Sciences (CIS 2004), LNCS 3314, pp. 1054-1060, 2004.
[27] X. Wen and Y. Liu, “Quantum message signature scheme without an arbitrator,” First International Symposium on Data, Privacy and E-Commerce (ISDPE 2007), pp. 496-500, 2007.
[28] X. H. Li, F. G. Deng and H. Y. Zhou, “Efficient quantum key distribution over a col-lective noise channel,” Physical Review A, vol. 78, p. 022321, 2008.
[29] L.-M. Duan and G.-C. Guo, “Optimal quantum codes for preventing collective ampli-tude damping,” Physical Review A, vol. 58, no. 5, pp. 3491-3495, 1998.
[30] Q.-Y. Cai, “Eavesdropping on the two-way quantum communication protocols with invisible photons,” Physics Letters A, vol. 351, issue 1-2, pp. 23-25, 2006.
[31] F.-G. Deng, P. Zhou, X.-H. Li, C.-Y. Li and H.-Y. Zhou, “Robustness of two-way quantum communication protocols against Trojan horse attack,” e-print quantph/0508168, 2005.
[32] L. Dong, X.-M. Xiu, Y.-J. Gao and F. Chi, “A controlled quantum dialogue protocol in the network using entanglement swapping,” Optics Communications, vol. 281, issue 24, pp. 6135-6138, 2008.
[33] X.-M. Xiu, L. Dong, Y.-J. Gao, F. Chi, Y.-P. Ren and H.-W. Liu, “A revised con-trolled deterministic secure quantum communication with five-photon entangled state,” Optics Communications, vol. 283, issue 2, pp. 334-347, 2010.
[34] X.-B. Chen, G. Xu, X.-X. Niu, Q.-Y. Wen and Y.-X. Yang, “An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement,” Optics Communications, vol. 283, issue 7, pp. 1561-1565, 2010.
[35] W. Stallings, Cryptography and Netwok Security, Principles and Practices, Prentice Hall, 2003.