研究生: |
劉淑白 Liu, Shu-Bai |
---|---|
論文名稱: |
以共濺鍍法製備氧化鋅鎵鋁薄膜之元件應用及其效能提升研究 Performance improvement of co−sputtering AlGaZnO devices |
指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 氧化鋅鎵鋁 、氧化鎵 、氧化鎵鋁 、氧化鋅 、光感測器 、酸鹼感測器 、延伸式閘極電晶體 |
外文關鍵詞: | AlGaZnO, Ga2O3, AlGaO, ZnO, photodetector, pH sensor, extended-gate-field-effect-transistor |
相關次數: | 點閱:146 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氮化鎵、碳化矽、氧化鋅以及氧化鎵等寬能隙半導體材料被廣泛研究並應用在光電及生醫相關領域之感測器上。其中,氧化鎵及其半導體化合物除了具有超寬能隙能夠承受較高的崩潰電壓及臨界電場之外,亦具備化學穩定性,以及生物相容性之特性,適合應用於深紫外光感測器及酸鹼值感測器。本論文提出利用射頻磁控濺鍍機製備氧化鋅鎵鋁之薄膜,透過調變氧化鎵鋁及氧化鋅共濺鍍之功率比例以及不同退火溫度,研究製程條件對於氧化鋅鎵鋁薄膜特性之影響,並深入探討及分析其作為深紫外光感測器及延伸式閘極場效電晶體酸鹼值感測器之特性。
本論文提出共濺鍍氧化鎵鋁及氧化鋅來製備氧化鋅鎵鋁深紫外光感測器,除了能調變氧化鋅鎵鋁之能隙,透過氧化鋅所提供的氧空缺亦能提升氧化鋅鎵鋁薄膜之導電特性,在最佳的氧化鎵鋁及氧化鋅共濺鍍功率之條件下,深紫外光感測器之電流開關比可達3.64 × 105,光響應度可達0.15 A/W,紫外光/可見光拒斥比為8.08 × 103,並進一步利用退火製程減少氧化鋅鎵鋁薄膜中的缺陷,使其電流開關比及光響應度可分別再提升至4.2 × 106及0.44 A/W。
此外,本論文亦製備氧化鋅鎵鋁延伸式閘極場效電晶體酸鹼感測器,探討不同製備條件之氧化鋅鎵鋁薄膜的表面特性與酸鹼感測器特性之關聯性。此氧化鋅鎵鋁薄膜具有耐酸鹼之特性,可偵測pH 2至pH 12的酸鹼值。透過增加氧化鋅的比例可增加表面粗糙度,以提升氧化鋅鎵鋁薄膜與酸鹼溶液之反應度,進而將元件感測電壓靈敏度及電流靈敏度分別提升至30.01 mV/pH and 31.06 μA/pH。
In recent years, wide bandgap semiconductor materials such as gallium nitride (GaN), silicon carbide (SiC), zinc oxide (ZnO), and gallium oxide (Ga2O3) have been widely studied and applied to sensors in optoelectronic and biomedical related fields. Among these semiconductor materials, gallium oxide (Ga2O3) and its semiconductor compounds not only have ultra-wide energy gap and exhibit high breakdown voltage and critical electric field, but also has chemical stability and biocompatibility, which are suitable for application of solar-blind photodetectors and pH sensors. In this dissertation, the preparation of aluminum-gallium-zinc-oxide (AlGaZnO) thin film is studied through co-sputtering aluminum-gallium-oxide (AlGaO) and zinc-oxide (ZnO) by radio frequency magnetron sputter, which with the advantage of low cost and fast fabrication. The AlGaZnO thin film characteristics of different AlGaO and ZnO co-sputtering power and the anneal condition are investigated, and the performance of AlGaZnO thin film as solar-blind photodetector and extended-gate-field-effect-transistor (EGFET) pH sensor are further discussed and analyzed.
The AlGaZnO solar-blind photodetectors with various AlGaO:ZnO co-sputtering power investigated in this work exhibit the adjustable bandgap from 4.35 eV to 5.06 eV, and the conductivity of AlGaZnO thin film can be improved due to the oxygen vacancies provided by ZnO. Under the optimized co-sputtering AlGaO power and ZnO power, it is found the on/off ratio, responsivity, and the UV to visible rejection ratio achieve 3.64 × 105, 0.15 A/W, and 8.08 × 103, respectively. Furthermore, through annealed at 300℃ for an hour, the defects in the thin film will be moved slightly and led the on/off ratio and responsivity improve to 4.2 × 106 and 0.44 A/W, respectively.
In addition, to investigate pH sensing characteristic of AlGaZnO thin film deposited by various AlGaO:ZnO power condition, the extended-gate-field-effect- transistor (EGFET) pH sensors are prepared. With the characteristics of acid and alkali resistance, the AlGaZnO EGFET pH sensor exhibits the wide detection range of pH 2 to 12. By increasing the power of ZnO, the surface roughness increase, related to more surface contact area and more binding sites to react with the pH buffer solution, resulting in the improved pH voltage sensitivity and pH current sensitivity of 30.01 mV/pH and 31.06 μA/pH, respectively.
Chapter 1
[1] H. Shen, C. X. Shan, B. H. Li, B. Xuan, and D. Z. Shen, “Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors,” Appl. Phys. Lett., vol. 103, no. 23, pp. 232112-1–232112-4, Dec. 2013.
[2] S. P. Chang, S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, Y. C. Lin, C. F. Kuo, and H. M. Chang, “ZnO photoconductive sensors epitaxially grown on sapphire substrates,” Sensors Actuators A, vol. 140, no. 1, pp. 60–64, Oct. 2007.
[3] S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, and X. L. Du, “ZnO ultraviolet photodiodes with Pd contact electrodes,” Acta Materialia, vol. 55, no. 1, pp. 329–333, Jan. 2007.
[4] C. K. Wang S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, “GaN MSM UV photodetectors with titanium tungsten transparent electrodes,” IEEE Trans. Electron. Devices, vol. 53, no. 1, pp. 38–42, Jan. 2006.
[5] A. K. Mishra, D. K. Jarwa, B. N. Mukharjee, A. Kumar, S. Ratan, and S. Jit, “CuO nanowire-based extended-gate field-effect-transistor (FET) for pH sensing and enzyme-free/receptor-free glucose sensing applications,” IEEE Sensors J., vol. 20, no. 9, pp. 5039–5047, May 2020.
[6] M. Mahdavi, A. Samaeian, M. Hajmirzaheydarali, M. Shahmohammadi, S. Mohajerzadeh, and M. A. Malboobi, “Label-free detection of DNA hybridization using a porous poly-Si ion-sensitive field effect transistor,” RSC Adv., vol. 4, pp. 36854–36863, Jul. 2014.
[7] Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer, and C. Zhou, “Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids,” ACS Nano, vol. 12, no. 2, pp. 1170–1178, Jan. 2018.
[8] F. P. Yu, S. L. Ou, and D. S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors,” Opt. Mater. Express, vol. 5, no. 5, pp. 1240–1249, Apr. 2015.
[9] S. Oh, Y. Jung, M. A. Mastro, J. K. Hite, C. R. Eddy, Jr., and J. Kim, “Development of solar-blind photodetectors based on Si-implanted β-Ga2O3,” Opt. Express, vol. 23, no. 22, pp. 28300–28305, Oct. 2015.
[10] G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express, vol. 23, no. 10, pp. 13554–13561, May 2015.
[11] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon., vol. 4, pp. 2937–2943, Oct. 2017.
[12] Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetectors arrays for solar-blind imaging,” J. Mater. Chem. C, vol. 7, pp. 2557–2562, 2019.
[13] O. Takayoshi, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Japanese J. Appl. Phys., vol. 46, no. 11, pp. 7217–7220, Nov. 2007.
[14] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sensors J., vol. 11, no. 4, pp. 999–1003, Apr. 2011.
[15] B. W. Krueger, C. S. Dandeneau, E. M. Nelson, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Variation of bandgap and lattice parameters of β−(AlxGa1-x)2O3 powder produced by solution combustion synthesis,” J. Am. Ceram. Soc., vol. 99, no. 7, pp. 2467–2473, Jul. 2016.
[16] Y. C. Wu, S. J. Wu, and C. H. Lin, “High performance EGFET-based pH sensor utilizing low-cost industrial-grade touch panel film as the gate structure,” IEEE Sensors J., vol. 15, no. 11, pp. 6279–6286, Nov. 2015.
[17] C. H. Lu, T. H. Hou, and T. M. Pan, “High-performance double-gate α-InGaZnO ISFET pH sensor using a HfO2 gate dielectric,” IEEE Trans. Electron Devices, vol. 65, no. 1, pp. 237–242, Jan. 2018.
[18] T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. V. Grattan, “Intrinsic fiber optic pH sensor for measurement of pH values in the range of 0.5–6,” IEEE Sensors J., vol. 16, no. 4, pp. 881–887, Feb. 2016.
[19] M. Chen, Y. Jin, X. Qu, Q. Jin, and J. Zhao, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment,” Sens. Actuators B, Chem., vol. 192, pp. 399–405, Mar. 2014.
[20] S. A. Pullano, C. D. Critello, I. Mahbub, N. T. Tasneem, S. Shamsir, S. K. Islam, M. Greco, and A. S. Fiorillo, “EGFET-Based Sensors for Bioanalytical Applications: A Review,” Sensors, vol. 18, pp. 4042-1–4042-24, Nov. 2018.
[21] A. K. Singh, A. Pandey, and P. Chakrabarti, “Fabrication, characterization, and application of CuO nano wires as electrode for ammonia sensing in aqueous environment using extended gate-FET,” IEEE Sensors J., vol. 21, no. 5, pp. 5779–5786, Mar. 2021.
[22] S. J. Young, Y. J. Chu, and Y. L. Chen, “Enhancing pH sensors performance of ZnO nanorods with Au nanoparticles adsorption,” IEEE Sensors J., vol. 21, no. 12, pp. 13068–13073, Jun. 2021.
[23] C. C. Yang, K. Y. Chen, and Y. K. Su, “TiO2 nano flowers based EGFET sensor for pH sensing,” Coatings, vol. 9, no. 4, p. 251, Apr. 2019.
[24] L. H. Slewa, T. A. Abbas, and N. M. Ahmed, “Effect of Sn doping and annealing on the morphology, structural, optical, and electrical properties of 3D (micro/nano) V2O5 sphere for high sensitivity pH-EGFET sensor,” Sens. Actuators B, Chem., vol. 305, Feb. 2020, Art. no. 127515.
[25] S. Palit, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Impact of Sn content on structural properties and sensing performance of InSnxOy thin film on flexible substrate for EGFET pH sensors,” J. Electrochem. Soc., vol. 166, no. 6, pp. B407–B413, Apr. 2019.
[26] S. K. Cho and W. J. Cho, “Effect of forming gas annealing on SnO2 sensing membranes in high-performance silicon-on-insulator extended gate field-effect transistors,” Thin Solid Films, vol. 706, Jul. 2020, Art. no. 138083.
[27] J. Lee, M. J. Kim, H. Yang, S. Kim, S. Yeom, G. Ryu, Y. Shin, O. Sul, J. K. Jeong, and S. B. Lee, “Extended-gate amorphous InGaZnO thin film transistor for biochemical sensing,” IEEE Sensors J., vol. 21, no. 1, pp. 178–184, Jan. 2021.
[28] T. M. Pan, C. H. Lin, and S. T. Pang, “Structural and sensing characteristics of NiOx sensing films for extended-gate field-effect transistor pH sensors,” IEEE Sensors J., vol. 21, no. 3, pp. 2597–2603, Feb. 2021.
[29] K. Niigata, K. Narano, Y. Maeda, and J. Pi Ao, “Temperature dependence of sensing characteristics of a pH sensor fabricated on AlGaN/GaN heterostructure,” Jpn. J. Appl. Phys., vol. 53, Sep. 2014, Art. no. 11RD01.
[30] N. K. Nguyen, T. Nguyen, T. K. Nguyen, S. Yadav, T. Dinh, M. K. Masud, P. Singha, T. N. Do, M. J. Barton, H. T. Ta, N. Kashaninejad, C. H. Ooi, N. T. Nguyen, and H. P. Phan, “Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions,” ACS Appl. Electron. Mater., vol. 3, no. 5, pp. 1959–1981, Apr. 2021.
[31] Y. H. Lin and C. T. Lee, “Stability of indium gallium zinc aluminum oxide thin-film transistors with treatment processes,” J. Electron. Mater., vol. 46, no. 2, pp. 936–940, Oct. 2016.
Chapter 2
[1] S.M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices,” Apr. 2006.
[2] R. Bhardwaj, P. Sharma, R. Singh, M. Gupta, and S. Mukherjee, “High responsivity MgxZn1-xO based ultraviolet photodetector fabricated by dual ion beam sputtering,” IEEE Sensors J., vol. 18, no. 7, pp. 2744–2750, Apr. 2018.
[3] J. C. Chou, P. K. Kwan, and Z. J. Chen, “SnO2 separative structure extended gate H+-ion sensitive field effect transistor by the sol–gel technology and the readout circuit developed by source follower,” Jpn. J. Appl. Phys., vol. 42, pp. 6790–6794, Nov. 2003.
[4] S. E. Naimi, B. Hajji, I. Humenyuk, J. Launay, and P. Temple-Boyer, “Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry,” Sens. Actuators B, Chem., vol. 202, pp. 1019–1027, Oct. 2014.
[5] D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, “Ion-sensing devices with silicon nitride and borosilicate glass insulators,” IEEE Trans. Electron Devices, vol. 34, no. 8, pp. 1700–1707, Aug. 1987.
[6] T. M. Pan, M. D. Huang, C. W. Lin, and M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensing,” Sens. Actuators B, Chem., vol. 144, pp. 139–145, Jan. 2010.
Chapter 3
[1] L. F. da Silva, J. C. M’Peko, A. C. Catto, S. Bernardini, V. R. Mastelaro, K. Aguir, C. Ribeiro, and E. Longo, “UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature,” Sens. Actuators B, vol. 240, pp. 573-579, Mar. 2017.
[2] V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small, vol. 11, pp. 1-12, Feb. 2015.
[3] H. Ferhati and F. Djeffal, “Role of optimized grooves surface-textured front glass in improving TiO2 thin film UV photodetector performance,” IEEE Sens. J., vol. 16, pp. 5618–5625, Jul. 2016.
[4] X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, and E. Xie, “High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure,” Small, vol. 9, pp. 2005–2011, Dec. 2012.
[5] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytür, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Quantum Electron., vol. 10, pp. 742–751, Aug. 2004.
[6] E. Monroy, E. Munoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz, and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042–1046, Nov. 1998.
[7] V. V. Kuryatkov, B. A. Borisov, S. A. Nikishin, Yu. Kudryavtsev, and R. Asomoza, “247nm solar-blind ultraviolet p-i-n photodetector,” J. Appl. Phys., vol. 100, pp. 096104-1–096104-3, Jun. 2006.
[8] A. S. Pratiyush, Z. Xia, S. Kumar, Y. Zhang, C. Joishi, R. Muralidharan, S. Rajan, and D. N. Nath, “MBE-grown β-Ga2O3-based schottky UV-C photodetectors with rectification ratio ∼107,” IEEE Photon. Technol. Lett., vol. 30, pp. 2025–2028, Dec. 2018.
[9] Y. Qin, H. Dong, S. Long, Q. He, G. Jian, Y. Zhang, X. Zhou, Y. Yu, X. Hou, P. Tan, Z. Zhang, Q. Liu, H. Lv, and M. Liu, “Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect solar-blind phototransistor with ultrahigh detectivity and photo-to-dark current Ratio,” IEEE Electron Device Lett., vol. 40, pp. 742–745, May. 2019.
[10] J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron., vol. 43, pp. 855–859, Oct. 2007.
[11] R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian and X. Li, “High-performances self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction,” J. Mater. Chem. C, vol. 6, pp. 299–303, Dec. 2017.
[12] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-bandgap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363–1398, Aug. 1994.
[13] S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing,” Thin Solid Films, vol. 516, pp. 5763–5767, Jul. 2008.
[14] D. Shao, M. Yu, J. Lian, and S. M. L. Sawyer, “Ultraviolet photodetector fabricated from multiwalled carbon nanotubes/Zinc-oxide nanowires/p-GaN composite structure,” IEEE Electron Device Lett., vol. 34, pp. 1169–1171, Sep. 2013.
[15] Ł. Jarosiński, J. Pawlak, and S. K. J. Al-Ani, “Inverse logarithmic derivative method for determining the energy gap and the type of electron transitions as an alternative to the Tauc method,” Opt. Mater., vol. 88, pp. 667–673, Feb. 2019.
[16] S. Kumar, V. Kumar, T. Singh, A. Ha¨hnel, R. Singh, “The effect of deposition time on the structural and optical properties of β-Ga2O3 nanowires grown using CVD technique,” J. Nanopart. Res., vol. 16, pp. 2189-1–2189-9, Dec. 2013.
[17] S. Marouf, A. Beniaiche, H. Guessas, A. Azizi, “Morphological, structural and optical properties of ZnO thin films deposited by dip coating method,” Mat. Res., vol. 20, pp. 88–95, Nov. 2016.
[18] J. H. Cha, K. H. Kim, Y. S. Park, S. J. Park, and H. W. Choi, “Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures,” Mol. Cryst. Liq. Cryst., vol. 499, pp. 85–91, Mar. 2009.
[19] M. Becerril, H. S. Lopez, A. G. Cervantes, and O. Z. Angel, “Aluminum-doped ZnO polycrystalline films prepared by co-sputtering of a ZnO-Al target,” Rev. Mex. de Fis., vol. 60, pp. 27–31, Feb. 2014.
[20] B. Panigrahy, M. Aslam, and D. Bahadur, “Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation,” Appl. Phys. Lett., vol. 98, pp. 183109-1–183109-3, May. 2011.
[21] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett., vol. 49, pp. 394–396, Jun. 1986.
[22] A. Kushwaha and M. Aslam, “Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity,” J. Phys. D: Appl. Phys., vol. 46, pp. 485104-1–485104-8, Sep. 2013.
[23] S. Qiao, R. Cong, J. Liu, B. Liang, G. Fu, W. Yu, K. Ren, S. Wang, and C. Pan, “A vertical layered MoS2/Si heterojunction for ultrahigh and ultrafast photoresponse photodetector,” J. Mater. Chem. C, vol. 6, pp. 3233–3239, Feb. 2018.
Chapter 4
[1] Y. C. Wu, S. J. Wu, and C. H. Lin, “High performance EGFET-based pH sensor utilizing low-cost industrial-grade touch panel film as the gate structure,” IEEE Sens. J., vol. 15, pp. 6279–6286, Nov. 2015.
[2] A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, and S. Jit, “CuO nanowire-based extended-gate field-effect-transistor (FET) for pH sensing and enzyme-free/receptor-free glucose sensing applications,” IEEE Sens. J., vol. 20, pp. 5039–5047, May. 2020.
[3] M. Mahdavi, A. Samaeian, M. Hajmirzaheydarali, M. Shahmohammadi, S. Mohajerzadeh, and M. A. Malboobi, “Label-free detection of DNA hybridization using a porous poly-Si ion-sensitive field effect transistor,” RSC Adv., vol. 4, pp. 36854–36863, Jul. 2014.
[4] Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer, and C. Zhou, “Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids,” ACS Nano., vol. 12, pp. 1170–1178, Jan. 2018.
[5] C. H. Lu, T. H. Hou, and T.-M. Pan, “High-Performance Double-Gate α-InGaZnO ISFET pH Sensor Using a HfO2 Gate Dielectric,” IEEE Trans. Electron Devices, vol. 65, pp. 237-242, Dec. 2017.
[6] T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. V. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J., vol. 16, 881–887, Oct. 2015.
[7] M. Chen, Y. Jin, X. Qu, Q. Jin, and J. Zhao, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment,” Sens. Actuators B: Chem., vol. 192, pp. 399–405, Nov. 2013.
[8] S. A. Pullano, C. D. Critello, I. Mahbub, N. T. Tasneem, S. Shamsir, S. K. Islam, M. Greco, and A. S. Fiorillo, “EGFET-based sensors for bioanalytical applications: A review,” Sensors, vol. 18, p. 4042, Nov. 2018.
[9] A. K. Singh, A. Pandey, and P. Chakrabarti, “Fabrication, characterization, and application of CuO nano wires as electrode for ammonia sensing in aqueous environment using extended gate-FET,” IEEE Sens. J., vol. 21, pp. 5779–5786, Dec. 2020.
[10] S. J. Young, Y. J. Chu, and Y. L. Chen, “Enhancing pH sensors performance of ZnO nanorods with Au nanoparticles adsorption,” IEEE Sens. J., vol. 21, pp. 13068– 13073, Mar. 2021.
[11] C. C. Yang, K. Y. Chen, and Y. K. Su, “TiO2 nano flowers based EGFET sensor for pH sensing,” Coatings, vol. 9, pp. 251-2–251-7, Apr. 2019.
[12] L. H. Slewa, T. A. Abbas, and N. M. Ahmed, “Effect of Sn doping and annealing on the morphology, structural, optical, and electrical properties of 3D (micro/nano) V2O5 sphere for high sensitivity pH-EGFET sensor,” Sens. Actuators B: Chem., vol. 305, pp. 127515-1–127515-34, Feb. 2020.
[13] S. Palit, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Impact of Sn content on structural properties and sensing performance of InSnxOy thin film on flexible substrate for EGFET pH sensors,” J. Electrochem. Soc., vol. 166, pp. B407–B413, Apr. 2019.
[14] S. K. Cho, and W. J. Cho, “Effect of forming gas annealing on SnO2 sensing membranes in high-performance silicon-on-insulator extended-gate field-effect transistors,” Thin Solid Films, vol. 706, pp. 138083-1–138083-9, Apr. 2020.
[15] J. Lee, M. J. Kim, H. Yang, S. Kim, S. Yeom, G. Ryu, Y. Shin, O. Sul, J. K. Jeong, and S. B. Lee, “Extended-gate amorphous InGaZnO thin film transistor for biochemical sensing,” IEEE Sens. J., vol. 21, pp. 178–184, Aug. 2020.
[16] T. M. Pan, C. H. Lin, and S. T. Pang, “Structural and sensing characteristics of NiOx sensing films for extended-gate field-effect transistor pH sensors,” IEEE Sens. J., vol. 21, pp. 2597–2603, Feb. 2021.
[17] K. Niigata, K. Narano, Y. Maeda, and J. Pi. Ao, “Temperature dependence of sensing characteristics of a pH sensor fabricated on AlGaN/GaN heterostructure” Jpn. J. Appl. Phys., vol. 53, pp. 211RD01-1–11RD01-5, Sep. 2014.
[18] N. K. Nguyen, T. Nguyen, T. K. Nguyen, S. Yadav, T. Dinh, M. K. Masud, P. Singha, T. N. Do, M. J. Barton, H. T. Ta, N. Kashaninejad, C. H. Ooi, N. T. Nguyen, and H. P. Phan, “Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions,” ACS Appl. Electron. Mater., vol. 3, no. 5, pp. 1959–1981, Apr. 2021.
[19] Y. H. Lin and C. T. Lee, “Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes,” J. Electron. Mater., vol. 46, pp.936–940, Oct. 2016.
[20] S. Kurtaran, S. Aldağ, and G. Öföfoğlu, “Effect of Gallium incorporation on the properties of ZnO thin films,” Preprints, Mar. 2019.
[21] T. Jia, J. Zhang, J. Wu, D. Wang, Q. Liu, Y. Qi, B. Hue, P. He, W. Pan, and X. Qi, “Synthesis amorphous TiO2 with oxygen vacancy as carriers transport channels for enhancing photocatalytic activity,” Mater. Lett., vol.265, pp. 127465-1–127465-5, Feb. 2020.
[22] Y. Lu, Y. X. Liu, L. He, L. Y. Wang, X. L. Liu, J. W. Liu, Y. Z. Li, G. Tian, H. Zhao, X. H. Yang, C. Janiak, S. Lenaerts, X. Y. Yang, and B. L. Su,” Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO2 for enhancement of the carrier transport,” Nanoscale, vol. 12, pp. 8364-8370, Dec. 2020.
[23] H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, J. K. Tseng, P. Y. Yang, J. C. Chou, and H. C. Cheng, “Coaxial-Structured ZnO/Silicon Nanowires Extended-Gate Feld-Effect Transistor as pH Sensor,” Thin Solid Films, vol. 529, pp. 173–176, Feb. 2013.
[24] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur and M. Willander, “Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods,” Sens., vol. 9, pp. 8911–8923, Nov. 2009.
[25] S. Palit, K. Singh, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor,” Sens. Actuators B: Chem., vol. 310, pp. 127850-1–127850-9, May. 2020.
[26] A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow, and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sens. Actuators B: Chem., vol. 205, pp. 199–205, Dec. 2014.
[27] W. L. Tsai, B. T. Huang, K. Y. Wang, Y. C. Huang, P. Y. Yang, and H. C. Cheng, “Functionalized carbon nanotube thin films as the pH sensing membranes of extended-gate field-effect transistors on the flexible substrates,” IEEE Trans. Nanotechnol., vol. 13, pp. 760–766, Jul. 2014.
[28] J. Zhang, D. Zhao, H. Yang, C. Li, H. Si, and D. Wu, “Dual-Mechanism Model to Describe the Slow Response of ISFETs,” IEEE Sens. J., vol. 19, pp. 7471–7478, Sep. 2019.
[29] J. H. Jeon and W. J. Cho, “Triple Gate Polycrystalline-Silicon-Based Ion-Sensitive Field-Effect Transistor for High-performance Aqueous Chemical,” IEEE Electron Device Lett., vol. 40, pp. 318–320, Jan. 2019.
[30] P. Sharma, S. Gupta, R. Singh, K. Ray, S. L. Kothari, S. Sinha, R. Sharma, R. Mukhiya, K. Awasthi, M. Kumar, “Hydrogen ion sensing characteristics of Na3BiO4–Bi2O3 mixed oxide nanostructures based EGFET pH sensor,” Int. J. Hydrog. Energy, vol. 45, pp. 18743–18751, Jul. 2020.
[31] J. C. Chou, P. K. Kwan, and Z. J. Chen, “SnO2 separative structure extended gate H+- ion sensitive field effect transistor by the sol–gel technology and the readout circuit developed by source follower,” Jpn. J. Appl. Phys., vol. 42, pp. 6790–6794, Nov. 2003.
[32] P.Bergveld, “The impact of MOSFET-based sensors,” Sens. Actuators, vol. 8, pp. 109–127, Oct. 1985.
[33] C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen,Y. C. Chu, C. Y. Chen, C. S. Lai, S. W. Chang, C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure,” Sens. Actuators B: Chem., vol. 194, pp. 419–426, Apr. 2014.
[34] G. M. Ali, R. H. Dhaher, and A. A. Abdullateef, “pH sensing characteristics of EGFET based on Pd-doped ZnO thin films synthesized by sol-gel method,” 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2015.
[35] J. L. Chiang and C. Y. Kuo, “Study on the characterizations and applications of the pH-Sensor with GZO/glass extended-gate FET,” 2013 IEEE 5th International Nanoelectronics Conference (INEC). IEEE, 2013.
[36] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, and M. H. Juang, “pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures.” J. Nanomater., vol. 2013, pp. 152079-1–152079-7, Oct. 2013.
[37] Y. T. Tsai, S. J. Chang, L.W. Ji, Y. J. Hsiao, and I. T. Tang, “Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology,” ACS omega, vol. 4, pp.19847-19855., Oct. 2019.