簡易檢索 / 詳目顯示

研究生: 陳春涼
Chen, Chun-Liang
論文名稱: 以奈米金屬氧化物擔體觸媒催化 二氧化硫和一氧化氮還原反應之研究
Catalytic Reduction of Sulfur Dioxide and Nitric Oxide over Nano Supported Metal Oxide Catalysts
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 171
中文關鍵詞: 觸媒還原奈米金屬氧化物擔體觸媒二氧化硫一氧化氮溶膠凝膠法
外文關鍵詞: Nano supported metal oxide catalysts, Catalytic reduction, Sulfur dioxide, Nitric oxide, Sol-gel method
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要是研究以觸媒還原法處理含二氧化硫及一氧化氮之氣體。首先研製篩選高性能之觸媒,接著我們進行了物性的鑑定和動力學之研究,以及TPR(程溫還原)和TPD(程溫脫附)等實驗。根據實驗及鑑定的結果,我們探究活性、選擇性及穩定性高低之原由,並推測可能之反應機構。除此之外,也探討觸媒預處理及進料中水蒸氣及氧氣對轉化率、生成分率與觸媒穩定性之影響。

      針對以氫氣為還原劑之二氧化硫還原反應,首先測試以γ-Al2O3為擔體之單金屬氧化物(Fe2O3、NiO、MnO2、MoO3、Cr2O3、Co3O4、CuO )觸媒中,發現NiO/γ-Al2O3觸媒對二氧化硫還原反應具最佳活性,Co3O4/γ-Al2O3觸媒次之。再將硝酸鎳溶液含浸於五種不同擔體上(γ-Al2O3、SiO2、TiO2、CeO2、V2O5 ),製成五種NiO擔體觸媒,結果以NiO/γ-Al2O3觸媒活性最佳。改變鎳含量,發現鎳含量為16 wt% 之NiO/γ-Al2O3擔體觸媒具有最佳活性。在不同進料莫爾比 ( H2/SO2 =1~4 ) 之下反應,發現H2/SO2 進料莫爾比為2是最佳進料條件。若以H2S+H2、H2、He等氣體對NiO/γ-Al2O3觸媒作前處理,發現以通入H2S+H2氣體作為前處理氣體可獲得最佳活化效果。進料之反應物中含水,對觸媒活性有抑制作用但為可逆。XRD測定結果發現,活性金屬硫化鎳在反應過程中,由有硫空缺之NiS及Ni3S2轉變為NiS2。

      接著以溶膠凝膠法製備奈米級CeO2,再以臨濕含浸法將金屬鹽類化合物分別含浸於奈米級CeO2 擔體上,製備各種不同奈米級金屬氧化物擔體觸媒。並利用TEM、SEM及XRD等儀器進行擔體及觸媒之組成與表面性質測定。實驗結果發現以溶膠凝膠法製備之擔體觸媒的顆粒介於20-50 nm。接著將這些擔體觸媒用來作為以一氧化碳 ( CO ) 為還原劑將二氧化硫 ( SO2 ) 還原為元素硫的研究。實驗結果顯示Cr2O3 /nano-CeO2 擔體觸媒最具活性。我們繼續以Cr2O3 /nano-CeO2 擔體觸媒進行SO2還原反應之研究,結果顯示CO和SO2 最適當的進料比為2.5,且SO2 和CO若濃度低,則SO2 的轉化率和元素硫產率會較高。我們也發現觸媒若以CO和SO2同時進行預硫化,則其性能會高於以其它氣體 ( 如CO、SO2或He ) 進行預硫化處理。由SO2-TPD和CO-TPD的圖譜可以看出Cr2O3 /nano-CeO2觸媒比其它觸媒更容易吸附和脫附SO2 和CO,此結果可以適當地解釋Cr2O3 /nano-CeO2觸媒對於SO2 的還原反應有較高活性之原由。我們也對自己所研發之觸媒和先前已發表於期刊上所使用之觸媒,就它們的性能作了比較。

      為了研發能同時處理二氧化硫及一氧化氮之觸媒,我們接著進行以金屬氧化物/nano-CeO2觸媒催化一氧化氮之還原反應。使用先前所製備之奈米級金屬氧化物/二氧化鈰擔體觸媒,進行以一氧化碳還原一氧化氮之還原反應,並對它們的性能進行評估。
    對催化以一氧化碳為還原劑之一氧化氮還原反應,於奈米CeO2作為擔體之六種金屬氧化物擔體觸媒中,以NiO/CeO2觸媒具最佳活性,CuO/CeO2 觸媒次之。為了探討擔體效應,我們又以CeO2、γ-Al2O3及TiO2三種擔體製備NiO/擔體觸媒,活性測試結果顯示:以CeO2 為擔體者具最佳之活性,γ-Al2O3次之。改變NiO/CeO2 擔體觸媒中NiO的含量,我們發現當鎳含量為5 wt%時,分散度最佳,而且活性最高。為了更進一步解釋何以所製備之NiO/擔體觸媒中,以CeO2 為擔體者具最佳之活性。接著我們以XRD、BET、CO-TPR、CO-TPD及NO-TPD來對奈米級金屬氧化物擔體觸媒作鑑定分析。由CO-TPR圖譜中發現NiO/CeO2 擔體觸媒較NiO/γ-Al2O3 擔體觸媒容易被還原,此與一氧化氮還原反應之催化活性相互脗合 ( NiO/CeO2 > NiO/γ-Al2O3 )。由NO-TPD圖譜發現,NiO/CeO2 和NiO/γ-Al2O3 擔體觸媒對一氧化氮皆具有吸附和脫附能力。根據CO-TPD實驗結果,發現CO會與NiO/CeO2 擔體觸媒中之氧反應生成CO2;然而CO卻不會與NiO/γ-Al2O3 擔體觸媒中之氧反應生成CO2。綜合CO-TPR、NO-TPD及CO-TPD之結果,我們可以推測:在NiO/CeO2 觸媒上發生之以一氧化碳與一氧化氮之反應,包含兩個反應機構,亦即是依兩個反應機構同時進行。其一為Eley-Rideal反應機構,是NO先被吸附於活性基座上 ( 低於200 oC就可被吸附 ),再與氣相中之CO進行一氧化氮之還原反應。其二為Mars-Van Krevelen反應機構,CO先將觸媒還原成還原態,本身變成CO2 (此一反應在大約100 oC就可發生),隨後NO再將觸媒氧化成氧化態,本身則被還原形成N2;此氧化及還原反應交互發生。

      最後對本論文作總結,也對未來研究方向提出建議。

     In this study, the catalytic reduction of sulfur dioxide and nitric oxide was investigated. We prepared and selected the high performance catalysts first, and then carried out physical characterization, kinetic studies, as well as TPR and TPD experiments. Basing on the experimental results, we evaluated the activity, selectivity and stability and figure out suitable reaction mechanisms for both SO2 and NO reduction reactions . In addition, the effects of pretreatment and adding water vapor and oxygen in the feed on the conversions, fractional yields and the stabilities of catalysts were also included in our research.

     In the work for the catalytic reduction of SO2 with H2 as a reducing agent, NiO/g-Al2O3 catalyst was found to be the most active catalyst among the seven g-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, g-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/g-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2+H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process.

     For the catalytic reduction of SO2 to elemental sulfur with CO as a reducing gas, nanosized CeO2 was first synthesized by sol-gel method and then used as the support to prepare six kinds of supported metal-oxide catalysts by incipient wetness impregnation method. The cause for different activities is also closely examined by characterizing the catalyst by TEM, SEM and XRD. The size of nanosized CeO2 particle synthesized by sol-gel method is about 20-50nm. Experimental results indicate that Cr2O3/nano-CeO2 was the most active catalyst. Using this catalyst, a kinetic study was performed on the reduction of SO2 and the optimal feed ratio of CO/SO2 was found to be 2.5/1, and low concentrations of SO2 and CO provide a high SO2 conversion and sulfur yield. It was also found that the catalyst presulfied by CO+SO2 exhibits a higher performance than those pretreated with CO, SO2 or He. The discrepancy in the stability and activity resulted in the pretreatment has been rationally explained. The temperature- programmed desorption patterns of SO2 and CO illustrate that Cr2O3/nano-CeO2 can adsorb and desorb SO2 and CO more easily than can other catalysts. These results may properly explain why Cr2O3/nano-CeO2 has a higher activity for the reduction of SO2. The catalyst we prepared is also compared with those reported in the literature basing on their activities and stabilities.

     For finding the best catalyst of simultaneous treatment for sulfur dioxide and nitric oxide. The performance of the supported metallic oxide catalysts for catalytic reduction of NO with CO as a reducing agent were investigated. NiO/CeO2 catalyst was found to be the most active catalyst among the six CeO2-supported metal-oxide catalysts tested. Furthermore, among the three supported NiO catalysts with CeO2, g-Al2O3 and TiO2 as the supports, the CeO2-supported NiO catalyst has the highest activity and g-Al2O3-supported one is the second. With NiO as the active species and CeO2 as the support, the optimal Ni content was 5 wt%. Subsequently, these prepared catalysts were characterized with XRD, BET, CO-TPR, CO-TPD and NO-TPD in order to understand the effects of the catalyst characters on the catalytic activities. The CO-TPR pattern also shows that the temperature range at which the CO reduction takes place on NiO/CeO2 catalyst is lower than that on NiO/g-Al2O3 catalyst. The NO-TPD experiments reveal that NO can be adsorbed and desorbed by both NiO/CeO2 catalyst and NiO/g-Al2O3 catalyst. The CO-TPD pattern also shows that the CO can react with the oxygen of the NiO/CeO2 catalyst to form CO2, but can not do the NiO/g-Al2O3 catalyst. The CO-TPR, NO-TPD and CO-TPD experiments reveal that the catalytic reduction of NO with CO includes two reaction mechanisms. One of them is the Eley Rideal mechanism, by which the NO molecule is adsorbed to the active site first (at a temperature lower than 200 oC ) and then reacts with CO molecule in the gas phase to form N2 and CO2; another is the Mars-Van Krevelen mechanism, by which the oxidized form of catalyst reacts with the CO molecule to form CO2 and itself transforms to the reduced form ( this reaction takes place at about 100 oC ), subsequently, the catalyst in the reduced form reacts with NO molecule to form N2 and itself transforms back to the oxidized form, and the above oxidation-reduction reactions ( redox reactions ) occur alternatively.

     At the end of this dissertation, some conclusions are drawn basing on the discussion in each chapter and some suggestions for the future studies are also included.

    目錄 中文摘要------------------------------------------------------------------------------------I 英文摘要----------------------------------------------------------------------------------IV 致謝---------------------------------------------------------------------------------------VII 目錄--------------------------------------------------------------------------------------VIII 表目錄------------------------------------------------------------------------------------XII 圖目錄-----------------------------------------------------------------------------------XIII 主文------------------------------------------------------------------------------------------1 第一章 緒論 ------------------------------------------------------------------------------1 1.1前言 ------------------------------------------------------------------------------1 1.2研究動機及目的 ---------------------------------------------------------------1 1.3研究論文內容 ------------------------------------------------------------------3 第二章 文獻回顧 ------------------------------------------------------------------------8 2.1二氧化硫及氮氧化物之性質、主要來源及危害 ------------------------8 2.1.1二氧化硫之性質、主要來源及危害----------------------------------8 2.1.2氮氧化物之性質、主要來源及危害----------------------------------9 2.2二氧化硫之處理技術---------------------------------------------------------11 2.2.1 排煙脫硫技術 ---------------------------------------------------------12 2.2.2觸媒還原法處理含二氧化硫之研究 -------------------------------14 2.2.3反應前處理之效應 ----------------------------------------------------18 2.2.4水氣之影響 -------------------------------------------------------------20 2.2.5 Claus Process ------------------------------------------------------------20 2.3氮氧化物之處理技術 --------------------------------------------------------25 2.3.1燃燒控制技術 ----------------------------------------------------------25 2.3.2排煙脫氮技術 ----------------------------------------------------------27 2.4奈米材料在觸媒上的應用 --------------------------------------------------30 2.4.1奈米粒子的基本性質---------------------------------------------------31 2.4.2奈米粒子之應用---------------------------------------------------------33 第三章 研究方法,實驗設備與步驟-------------------------------------------------38 3.1前言(研究方法)---------------------------------------------------------------38 3.2實驗氣體、實驗藥品、氣體成份之分析儀器與G.C.之分析 條件------------------------------------------------------------------------------39 3.2.1實驗氣體----------------------------------------------------------------39 3.2.2實驗藥品----------------------------------------------------------------39 3.2.3氣體成份之分析儀器-------------------------------------------------41 3.2.4 G.C.之分析條件------------------------------------------------------41 3.3儀器條件校正------------------------------------------------------------------42 3.4還原反應系統------------------------------------------------------------------54 3.4.1二氧化硫還原反應系統----------------------------------------------54 3.4.2一氧化氮還原反應系統----------------------------------------------56 3.5觸媒物性鑑定之相關儀器---------------------------------------------------56 3.5.1表面積測量儀----------------------------------------------------------56 3.5.2 X光繞射分析(XRD)儀------------------------------------------------57 3.5.3程溫脫附(TPD)設備及操作方法與步驟 -------------------------57 3.5.3.1與二氧化硫還原反應相關之程溫脫附--------------------57 3.5.3.2與一氧化氮還原反應相關之程溫脫附--------------------58 3.5.4一氧化碳程溫還原(CO-TPR)-------------------------------------59 3.5.5電子顯微鏡-------------------------------------------------------------60 3.5.6電子能譜化學分析儀-------------------------------------------------60 第四章 金屬氧化物擔體觸媒用於以氫氣為還原劑之二氧化硫還原反應 -----------------------------------------------------------------------------------62 4.1前言------------------------------------------------------------------------------62 4.2 觸媒製備 ----------------------------------------------------------------------63 4.3 觸媒活性之測定(二氧化硫還原反應實驗)--------------------------63 4.4 結果與討論 ------------------------------------------------------------------65 4.4.1篩選最佳活性物質及最適合之擔體------------------------------65 4.4.2不同鎳含量對擔體觸媒活性之影響------------------------------66 4.4.3前處理對觸媒活性之影響------------------------------------------67 4.4.4 H2與SO2之進料比對NiO/γ-Al2O3觸媒活性之影響----------68 4.4.5水蒸氣及H2S對觸媒活性之影響 ---------------------------------68 4.4.6氧氣對觸媒活性之影響 ( 微量氧對反應之影響 )-----------69 4.5 結論 --------------------------------------------------------------------------71 第五章 金屬氧化物/二氧化鈰擔體觸媒用於以一氧化碳為還原劑之二 氧化硫還原反應---------------------------------------------------------------83 5.1前言------------------------------------------------------------------------------83 5.2 奈米級二氧化鈰製備方式簡介 -------------------------------------------84 5.2.1檸檬酸溶膠凝膠法 --------------------------------------------------84 5.2.2 PAA溶膠凝膠法 -----------------------------------------------------85 5.3奈米級CeO2擔體之製備 ----------------------------------------------------87 5.3.1檸檬酸溶膠凝膠法 --------------------------------------------------87 5.3.2 PAA溶膠凝膠法 -----------------------------------------------------87 5.4奈米級金屬氧化物/二氧化鈰擔體觸媒製備----------------------------88 5.5觸媒活性之測定 -------------------------------------------------------------88 5.6結果與討論 -------------------------------------------------------------------90 5.6.1奈米級CeO2擔體之物性鑑定---------------------------------------90 5.6.2檸檬酸溶膠凝膠法製備之奈米級金屬氧化物/CeO2擔體觸 媒之物性鑑定---------------------------------------------------------92 5.6.3二氧化硫還原反應活性 --------------------------------------------93 5.6.4程溫脫附 --------------------------------------------------------------93 5.6.5一氧化碳的程溫還原 (CO-TPR)-----------------------------------95 5.6.6進料比(CO/SO2)對擔體觸媒活性之影響----------------------96 5.6.7前處理對觸媒活性之影響 -----------------------------------------97 5.6.8進料濃度對觸媒活性之影響 --------------------------------------99 5.6.9氧氣對觸媒活性之影響 ( 微量氧對反應之影響 ) --------100 5.7 Cr2O3/nano-CeO2觸媒與其它觸媒之比較-----------------------------101 5.8 結論 --------------------------------------------------------------------------102 第六章 以金屬氧化物/二氧化鈰觸媒催化一氧化氮之還原反應------------125 6.1前言-----------------------------------------------------------------------------125 6.2擔體觸媒製備-----------------------------------------------------------------127 6.3觸媒活性之測定--------------------------------------------------------------127 6.4結果與討論 --------------------------------------------------------------------129 6.4.1篩選較佳金屬氧化物/二氧化鈰擔體觸媒 -----------------------129 6.4.2不同擔體對NiO/擔體觸媒物性及活性之影響-------------------130 6.4.3 BET表面積及孔徑分佈-----------------------------------------------130 6.4.4擔體觸媒之晶相鑑定--------------------------------------------------131 6.4.5電子能譜化學分析(XPS) --------------------------------------------132 6.4.6一氧化碳程溫還原(CO–TPR)------------------------------------133 6.4.7程溫脫附(TPD) -----------------------------------------------------134 6.4.8反應機構之推測--------------------------------------------------------136 6.4.9不同鎳金屬含量對NiO/CeO2觸媒活性之影響------------------137 6.4.10進料濃度比(R=CO/NO)對擔體觸媒活性之影響---------------138 6.4.11氧氣對觸媒活性之影響 ( 微量氧對反應之影響 ) ---------139 6.5 結論 ---------------------------------------------------------------------------140 第七章 總結 --------------------------------------------------------------------------159 參考文獻--------------------------------------------------------------------------------164

    1. Amiridis, M.D.; Duevel, R.V.; Wachs, I.E., The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia, Appl. Catal. B, 20, 111 (1999).
    2. Barrera, A.; Viniegra, M.; Bosch, P.; Lara, V.H.; Fuentes, S., Pd/Al2O3-La2O3 catalysts prepared by sol–gel: Characterization and catalytic activity in the NO reduction by H2, Appl. Catal. B, 34, 97 (2001).
    3. Birringer, R.; Herr, U.; Gleiter, H., Nanocrystalline materials: a first report, JIM Trans. Suppl., 27, 43 (1986).
    4. Boizumault-Moriceau, P.; Pennequin, A.; Grzybowska, B.; Barbaux, Y., Oxidative dehydrogenation of propane on Ni Ce O oxide: effect of the preparation method, effect of potassium addition and physical characterization, Appl. Catal. A, 245, 55 (2003).
    5. Bosch, H.; Janssen, F., Catalytic reduction of nitrogen oxides: A review on the fundamentals and technology, Catal. Today, 2, 4 (1987).
    6. Carniti, P.; Gervasini, A.; Modica, V.H.; Ravasio, N., Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas, Appl. Catal. B, 28, 175 (2000).
    7. Chen, L.; Horiuchi, T.; Osaki, T.; Mori, T., Catalytic selective reduction of NO with propylene over Cu-Al2O3 catalysts: influence of catalyst preparation method, Appl. Catal. B, 23, 259 (1999).
    8. Chen, C.L.; Wang, C.H.; Weng, H.S., Reduction of Sulfur Dioxide with Hydrogen to Elemental Sulfur over Supported Transition-Metal Oxide Catalysts, Chemosphere, 56, 425 (2004).
    9. Chung, J.S.; Paik, S.C.; Kim, H.S.; Lee, D.S.; Nam, I.S., Removal of H2S and/or SO2 by catalytic conversion technologies, Catal. Today, 35, 37 (1997).
    10. Gall, R.L.; Piasecki, E.J., The double alkali wet scrubbing system, Chem. Eng. Prog., 71, 72 (1975).
    11. Happel, J.; Hnatow, M.A.; Bajars, L.; Kundrath, M., Lanthanum Titanate Catalyst-Sulfur Dioxide Reaction, Ind. Eng. Chem. Prod. Res. Dev., 14, 154 (1975).
    12. Happel, J.; Leon, Al.; Hnatow, M. A.; Bajars, L. Catalyst Composition Optimization for the Reduction of Sulfur Dioxide by Carbon Monoxide on a La0.5Sr0.5CoO3 Catalyst, Ind. Eng. Chem. Prod. Res. Dev., 16, 150 (1977).
    13. Harada, T.; Teraoka, Y.; Kagawa, S., Perovskite-type oxides as catalysts for selective reduction of nitric oxide by ethylene, Appl. Surface Sci., 122, 505 (1997).
    14. Hibbert, D. B.; Tseung, A. C. C. Catalyst Participation in the Reduction of Sulfur Dioxide by Carbon Monoxide in the Presence of Water and Oxygen, J. Chem. Soc. Faraday Trans., 74, 1981 (1988).
    15. Huang, Z.; Zhu, Z.; Liu, Z., Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Appl. Catal. B, 39, 361 (2002).
    16. Huang, Y.-J.; Wang, H.P; Lee, J.-F., Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES, Chemosphere, 50, 1035 (2003).
    17. Hsu , L.-Y. and Teng, H., Influence of thermal treatment on the catalytic activity of Cu-loaded carbons in NO reduction with NH3 and regeneration ofthe thermally deactivated catalysts, Appl. Catal. B, 42, 69 (2003).
    18. Hyun, K.S.; Hirabayashi, H.; Yahiro, H.; Watanabe, M.; Iwamoto, M., Selective catalytic reduction of NO by ethene in excess oxygen over platinum ion-exchanged MFI zeolites, Catal. Today, 26, 13 (1995).
    19. Ishiguro, A.; Liu, Y.; Nakajima, T.; Wakatsuki, Y.J., Efficient reduction of sulfur dioxide with hydrogen over TiO2-supported catalysts derived from ruthenium salts and ruthenium cluster complexes, J. Catal., 206, 159 (2002).
    20. Jang, D.H.; Shin Y.J.; Oh S.M., Dissolution of Spinel Oxides and Capacity Losses in 4V Li/LiMn2O4 Cells, J. Electrochem. Soc., 143(7), 2204 (1996).
    21. Khalafalla, S. E.; Haas, L. A. The Role of Metallic Component in the Iron-Alumina Bifunctional Catalyst for Reduction of SO2 with CO, J. Catal., 24, 121 (1972).
    22. Khan, S.R.; Opalko, F.J.; Adair, J.H., Heterogeneous nucleation of calcium oxalate trihydrate in artificial urine by constant composition, J. Crystal Growth, 181, 410 (1997).
    23. Kim, H.; Park, D.W.; Woo, H. C.; Chung, J. S., Reduction of SO2 by CO to elemental sulfur over Co3O4-TiO2 catalysts, Appl. Catal. B, 19, 233 (1998).
    24. Klug, H.P.; Alexander, L.E., X-ray Diffraction Procedures, Wiley, New York (1954).
    25. Kwart, H.; Schuit, A.; Gates, B.C., Hydrodesulfurization of thiophenic compounds: the reaction mechanism, J. Catal., 61, 128 (1980).
    26. Lagas, J.A.; Borsboom, J.; Berben, P. H., Selective-oxidation catalyst improves the claus process, J. Oil Gas, 10 (1988).
    27. Lagas, J.A.; Borsboom, J.; Heijkoop, G., Claus process gets extra boost, Hydrocarbon Processing, 40 (1989 April).
    28. Leontiou, A.A.; Ladavos, A.K.; Pomonis, P.J., Catalytic NO reduction with CO on La1−xSrx (Fe3+/Fe4+) O3±δ perovskite-type mixed oxides, Appl. Catal. A, 241, 133 (2003).
    29. Li, N.; Wang, A.; Tang, J.; Wang, X.; Liang, D.; Zhang, T., NO reduction by CH4 in the presence of excess O2 over Co/sulfated zirconia catalysts, Appl. Catal. B, 43, 133 (2003).
    30. Li, Z.; Flytzani-Stephanopoulos, M., Effects of water vapor and sulfur dioxide on the performance of Ce–Ag-ZSM-5 for the SCR of NO with CH4, Appl. Catal. B, 22, 35 (1999).
    31. Liu, W.; Wadia, C.; Flytzani-Stephanopoulos, M., Transition metal/ fluorite-type oxides as active catalysts for reduction of sulfur dioxide to elemental sulfur by carbon monoxide, Catal. Today, 28, 391 (1996).
    32. Long, R.Q.; Yang, R.T., Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts, Appl. Catal. B, 24, 13 (2000).
    33. Ma, J.; Fang, M.; Lau, N. T. On the synergism between La2O2S and CoS2 in the reduction of SO2 to elemental sulfur by CO, J. Catal., 158, 251 (1996).
    34. Ma, J.; Fang, M.; Lau, N. T. The catalytiv reduction of SO2 by CO over lanthanum oxysulphide, Appl. Catal. A, 150, 253 (1997).
    35. Morán-Pineda, M.; Castillo, S.; López, T.; Gómez, R.; Cordero-Borboa, O.N., Synthesis, characterization and catalytic activity in the reduction of NO by CO on alumina–zirconia sol–gel derived mixed oxides, Appl. Catal. B, 21, 79 (1999).
    36. Mulligan, D. J.; Berk, D. Reduction of Sulfur Dioxide with Methane over Selected Transition Metal Sulfides, Ind. Eng. Chem. Res., 28, 926 (1989).
    37. Paik, S.C.; Chung, J.S., Selective catalytic reduction of sulfur dioxide with hydrogen to elemental sulfur over Co-Mo/Al2O3, Appl. Catal. B, 5, 233 (1995).
    38. Paik, S.C.; Kim, H.S.; Chung, J.S., The catalytic reduction of SO2 to elemental sulfur with H2 or CO, Catal. Today, 38, 193 (1997).
    39. Palmqvist, A.E.C.; Zwinkels, M.F.M.; Zhang, Y.; Järås, S. G.; Muhammed, M., Reduction of sulfur dioxide by carbon monoxide over doped nanophase cerium oxides, Nano Structured Materials, 8, 801 (1997).
    40. Ohtsuka, H.; Tabata, T., Effect of water vapor on the deactivation of Pd-zeolite catalysts for selective catalytic reduction of nitrogen monoxide by methane, Appl. Catal. B, 21, 133 (1999).
    41. Paskall, H.G., Capability of the modified claus, Western research, Calgary, Alberta, Canada. (1979).
    42. Pasel, J.; Speer, V.; Albrecht, C.; Richter, F.; Papp, H., Metal doped sulfated ZrO2 as catalyst for the selective catalytic reduction (SCR) of NO with propane, Appl. Catal. B, 25, 105 (2000).
    43. Pietrogiacomi, D.; Tuti, S.; Campa, M.C.; Indovina, V., Cobalt supported on ZrO2: catalysts characterization and their activity for the reduction of NO with C3H6 in the presence of excess O2, Appl. Catal. B, 28, 43 (2000).
    44. Qi, G.; Yang, R.T.; Chang, R., MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B, 51, 93 (2004).
    45. Rosenberg, H.S.; Engdahl, R.B.; Oxley, J.H.; Genco, J.M., The status of SO2 control systems, Chem. Eng. Prog., 71, 66 (1975).
    46. Saaid, I. M.; Mohamed, A. R.; Bhatia, S., Activity and characterization of bimetallic ZSM-5 for the selective catalytic reduction of NOx, J. Mol. Catal. A, 189, 241 (2002).
    47. Salis, J.; Berk, D. Reduction of Sulfur Dioxide with Methane over Activated Alumina, Ind. Eng. Chem. Res., 27, 1951 (1988).
    48. Shan, W.; Luo, M.; Ying, P.; Shen, W.; Li, C., Reduction property and catalytic activity of Ce1−XNiXO2 mixed oxide catalysts for CH4 oxidation, Appl. Catal. A, 246, 1 (2003).
    49. Shen, S.T; Weng, H.S., Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the La1-XSrXBO3 (B=Mn, Fe, Co, Ni) catalysts, Ind. Eng. Chem. Res., 37, 2654 (1998).
    50. Singh, R. N.; Tiwari, S. K.; Singh, S. P.; Jain, J.N.; Singh, N. K., Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol-gel route for electrolytic oxygen evolution in alkaline solution, International J. Hydrogen Energy, 22, 557 (1997).
    51. Sorenson, S.C.; Wronkiewicz, J.A.; Wirtz, G.P., Properties of LaCoO3 as a catalyst exhaust gases, Ceramic Bulletin, 53, 446 (1974).
    52. Teng, H.; Hsu , L.-Y.; Lai, Y.-C., Catalytic reduction of NO with NH3 over carbons impregnated with Cu and Fe, Environmental Science & Technology, 35, 2369 (2001).
    53. Van den Brink, P.J.; Mcdonald, C.M., Influence of the fuel hydrocarbon composition on nitric oxide conversion in 3-way catalysts: The NOx- aromatics effect, Appl. Catal. B, 6, 197 (1995).
    54. Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Muilenberg, G.E., Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, (1979).
    55. Wang, C.H.; Lin, S.S.; Hwang, W.U.; Weng, H.S., Supported transition-metal oxide catalysts for catalytic reduction of SO2 with CO as a reducing agent, Ind. Eng. Chem., 41, 666 (2002).
    56. Wang, C.H.; Lin, S.S.; Sung, P.C.; Weng., H.S., Catalytic reduction of SO2 over supported transition-metal oxide catalysts with C2H4 as a reducing agent, Appl. Catal. B, 40, 331 (2003).
    57. Wen, B., NO reduction with H2 in the presence of excess O2 over Pd/MFI catalyst, Fuel, 81, 1841 (2002).
    58. Wögerbauer, C.; Maciejewski, M.; Baiker, A., Reduction of nitrogen oxides over unsupported iridium: effect of reducing agent, Appl. Catal. B, 34, 11 (2001).
    59. Xiaoyuan, J.; Guanghui, D.; Liping, L.; Yingxu, C.; Xiaoming, Z., Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO + CO reaction, J. Mol. Catal. A, 218, 187 (2004).
    60. Yokota, K.; Fukui, M.; Tanaka, T., Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen, Appl. Surface Sci., 122, 273 (1997).
    61. Zhang, X.; Hayward, D.; Lee, C.; Michael, D.; Mingos, P., Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts, Appl. Catal. B, 33, 137 (2001).
    62. Zhu, T.; Kundakovic, L.; Dreher, A.; Flytzani-Stephanopoulos, M., Redox chemistry over CeO2-based catalysts: SO2 reduction by CO or CH4, Catal. Today, 50, 381 (1999).
    63. Zhuang, S.X.; Magara, H.; Yamazaki, M.; Takahashi, Y.; Yamada, M., Catalytic conversion of CO, NO and SO2 on the supported sulfide catalyst: Catalytic Reduction of SO2 by CO, Appl. Catal. B, 24, 89 (2000).
    64. 朱恆模, "氫氧化鈣與二氧化硫反應之動力學研究",台灣大學化學工程研究所碩士論文, 六月(1995).
    65. 朱柏昱, "以Fe(Ⅱ)EDTA探討煙道氣中除硫脫硝之吸收反應動力"成功大學環境工程學系碩士論文,六月(1997).
    66. 宋培彰, "過渡金屬氧化物擔體觸媒以乙烯為還原劑催化二氧化硫還原反應之研究",成功大學化學工程學系碩士論文,六月(2001).
    67. 吳蓉祐, "二氧化硫還原成硫化氫觸媒之探討", 東海大學化學工程研究所碩士論文,六月(1998).
    68. 沈孝宗,"以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究",成功大學化學工程學系博士論文,七月(1998).
    69. 陳郁文, "納米材料在觸媒上的應用",化工, 45(5), 121 (1998).
    70. 陳寶丞,"以溶膠凝膠法製備用於一氧化氮還原反應之奈米級觸媒",成功大學化學工程學系碩士論文,六月(2001).
    71. 胡維民, "奈米級La1-xA´xMnO3(A´=Sr,Ce)觸媒用於一氧化氮還原反應之性能",成功大學化學工程學系碩士論文,六月(2002).
    72. 蔣孝澈,陳光龍, "由鹽類溶液製作奈米氧化物之簡介", 化工, 46(3), 67 (1999).
    73. 吳國卿, 董玉蘭, "奈米粒子材料的觸媒性質",化工資訊, 42, 5 (1999).

    下載圖示 校內:2011-06-17公開
    校外:2011-06-17公開
    QR CODE