簡易檢索 / 詳目顯示

研究生: 黃冠霖
Huang, Kuan-Lin
論文名稱: 探討myozenin-1在糖尿病肌少症中扮演的角色
Investigation of the role of myozenin-1 in diabetic sarcopenia
指導教授: 歐弘毅
Ou, Horng-Yih
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 高脂飲食Myozenin-1PPAR-γ2肌少症第二型糖尿病
外文關鍵詞: high fat diet, Myozenin-1, PPAR-γ2, sarcopenia, type 2 diabetes
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌少症 (Sarcopenia)是指肌肉質量下降與肌肉功能流失的一種疾病,為老年人口中相當普遍的疾病。肌少症患者的跌倒率、住院率,甚至是死亡率,都會比正常人高出許多。先前的研究發現患有第二型糖尿病 (Type 2 diabetes mellitus)的患者是肌少症的高風險族群,第二型糖尿病患者不僅具有較差的肌肉強度 (muscle strength)與肌肉質量 (muscle mass),更具有較差的骨骼肌指數 (Skeletal muscle index)。因此為了探討肌少症與第二型糖尿病之間的關係,我們利用高脂飲食 (high fat diet)建立第二型糖尿病的動物模型。由此研究發現,與正常飼料組相比,第二型糖尿病動物不僅具有較差的骨骼肌指數,更具有較差的肌肉強度,而肌束的橫切面面積也較正常飼料組小。進一步利用RNA微陣列分析 (microarray),我們發現在第二型糖尿病肌少症的動物中,myozenin-1 (MYOZ1)不僅具有較高的基因表現,也會與肌肉細胞的分化以及骨骼肌的葡萄糖代謝有關。而透過臨床試驗,我們分析出受試者血液中MYOZ1的表現量,與肌肉強度、骨骼肌指數以及糖化血色素之間的相關性。MYOZ1是主要存在於骨骼肌中的一種核蛋白 (nuclear protein),主要參與調節鈣調節磷酸 (Calcineurin)的訊號傳遞,同時也會參與肌纖維 (myofibril)中Z線 (Z-line)的維持與第二型肌纖維的生長。而有研究發現過氧化體增殖活化受體-γ2 (Peroxisome proliferator-activated receptor-γ2, PPAR-γ2)基因上的啟動子 (promoter)具有MYOZ1的結合位置。PPAR-γ2對於調控骨骼肌的葡萄糖代謝 (glucose metabolism)與胰島素敏感性 (insulin sensitivity)是相當重要的。我們發現在糖尿病肌少症小鼠的骨骼肌中,MYOZ1具有較高的mRNA與蛋白表現量,並發現MYOZ1會促進L6肌肉纖維母細胞的分化,然而在L6細胞中,MYOZ1會促進PPAR-γ2與第四型葡萄糖轉運蛋白 (Glucose transporter 4, GLUT4)的表現,最後會增加L6細胞的葡萄糖攝取。此外,高糖 (High glucose)會增加MYOZ1在L6細胞中的表現量。但是在HFD小鼠的骨骼肌中,PPAR-γ2的表現是受到抑制的,而高脂肪酸會抑制PPAR-γ2的表現。總結以上我們認為MYOZ1不僅能促進骨骼肌的葡萄糖代謝,也能在第二型糖尿病肌少症中,扮演一個補償肌肉分化較差的角色。

    MYOZ1, a nuclear protein, exclusively expressed in skeletal muscle which was involved in remodeling and growth of type-II fibers. It promotes the expression of peroxisome proliferator-activated receptor-γ2 (PPAR-γ2), and important for regulating glucose metabolism and insulin sensitivity of skeletal muscle. Sarcopenia is defined as a reduction of muscle mass and muscle strength. In addition to aging, type 2 diabetes is another important risk factor for sarcopenia. Type 2 diabetic patients were regularly accompanied with a serious loss of muscle mass and muscle strength. In order to investigate the relationship between type 2 diabetes and sarcopenia, we established high fat diet (HFD)-induced diabetes animal model to clarify this issue. Comparing with normal chow group, we found that HFD mice had a worse Skeletal muscle index and muscle strength. Moreover, we found that the expression of myozenin 1 (MYOZ1) was significantly increased in the muscle of HFD diabetic mice using microarray analysis. In clinical trials, we found that the correlation between the expression of MYOZ1 in blood and muscle strength, SMI and HbA1c. Overall, we speculated that MYOZ1 plays an important role in type 2 diabetic sarcopenia.

    考試合格證明 I 中文摘要 II 英文延伸摘要 IV 圖目錄 XIV 第一章 緒論 1 1-1 肌少症 1 1-2 第二型糖尿病 1 1-3 第二型糖尿病與肌少症之間的相關性 2 1-4 骨骼肌 3 1-6 Myozenin-1 4 1-7 過氧化體增殖活化受體-γ2 4 1-8 第四型葡萄糖轉運蛋白 5 第二章 研究動機與目的 6 第三章 實驗材料與方法 7 3-1 臨床實驗 7 3-2 實驗動物 7 3-3 握力測驗 (Grip strength test) 8 3-4 滾輪測驗 (Rotarod test) 8 3-5 動物生化檢測 8 3-6 細胞培養與處理 9 3-7 蛋白質 (protein)樣品製備 9 3-7-1 動物組織蛋白質萃取 9 3-7-2 細胞蛋白質萃取 10 3-8 西方墨點法 (Western blots) 10 3-8-1 聚丙烯醯胺膠體電泳 (SDS Poly-acrylamide-gel-electrophoresis, SDS-PAGE) 10 3-8-2 西方墨點法 (Western blots) 11 3-9 核醣核酸 (RNA)樣品製備 12 3-9-1 動物組織醣核酸樣品製備 12 3-9-2 細胞核醣核酸樣品製備 12 3-10 同步定量聚合酶連鎖反應 (Real Time polymerase Chain Reaction; Real-time PCR) 13 3-10-1 互補脫氧核醣核酸 (complementary DNA, cDNA)樣品製備 13 3-10-2 Real-Time PCR分析特定基因表現 13 3-11 細胞基因轉殖 14 3-11-1 MYOZ1基因過量表現 (overexpression) 14 3-11-2 MYOZ1基因敲落 (knockdown) 15 3-12 基因微陣列 (microarray) 16 3-13 細胞免疫染色 (Immunofluorescence cytochemistry) 16 3-14 細胞存活率分析 (MTT assay) 17 3-15 葡萄糖攝取分析 (2-NBDG uptake) 17 3-16 流式細胞儀 (flow cytometry) 17 3-17 統計分析 (Statistical analysis) 18 第四章 實驗結果 19 4-1 第二型糖尿病肌少症動物模型 19 4-2 MYOZ1在骨骼肌中的角色 20 4-3 MYOZ1在臨床上的表現 20 4-4 MYOZ1在第二型糖尿病肌少症中的表現 21 4-5 MYOZ1對於骨骼肌生長的影響 21 4-6 MYOZ1對於L6細胞葡萄糖代謝的影響 22 4-7 MYOZ1對於骨骼肌葡萄糖代謝的影響 22 第五章 討論 61 第六章 參考文獻 68

    [1] Lee, R. C., Wang, Z. M., & Heymsfield, S. B. (2001). Skeletal muscle mass and aging: regional and whole-body measurement methods. Can J Appl Physiol, 26(1), 102 122.doi:10.1139/h01-008

    [2] Mitsiopoulos, N., Baumgartner, R. N., Heymsfield, S. B., Lyons, W., Gallagher, D., & Ross, R. (1998). Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985), 85(1), 115122. doi:10.1152/jappl.1998.85.1.115

    [3] Wang, Z. M., Visser, M., Ma, R., Baumgartner, R. N., Kotler, D., Gallagher, D., & Heymsfield, S. B. (1996). Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol (1985), 80(3), 824-831. doi:10.1152/jappl.1996.80.3.824

    [4] Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., . . . Zamboni, M. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 48(4), 601. doi:10.1093/ageing/afz046

    [5] Alexandre Tda, S., Duarte, Y. A., Santos, J. L., Wong, R., & Lebrão, M. L. (2014). Sarcopenia according to the European Working Group on Sarcopenia in Older People (EWGSOP) versus dynapenia as a risk factor for mortality in the elderly. J Nutr Health Aging, 18(8), 751-756. doi:10.1007/s12603-014-0540-2

    [6] Iannuzzi-Sucich, M., Prestwood, K. M., & Kenny, A. M. (2002). Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women J Gerontol A Biol Sci Med Sci, 57(12), M772-777. doi:10.1093/gerona/57.12.m772

    [7] Chien, M. Y., Huang, T. Y., & Wu, Y. T. (2008). Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc, 56(9), 1710-1715. doi:10.1111/j.1532 5415.2008.01854.x

    [8] Mayhew, A. J., Amog, K., Phillips, S., Parise, G., McNicholas, P. D., de Souza, R. J., . . . Raina, P. (2019). The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing, 48(1), 48-56. doi:10.1093/ageing/afy106

    [9] Janssen, I., Shepard, D. S., Katzmarzyk, P. T., & Roubenoff, R. (2004). The Healthcare costs of sarcopenia in the United States. J Am Geriatr Soc, 52(1), 80-85. doi:10.1111/j.1532-5415.2004.52014.x

    [10] Casals-Vázquez, C., Suárez-Cadenas, E., Estébanez Carvajal, F. M., Aguilar Trujillo, M. P., Jiménez Arcos, M. M., & Vázquez Sáchez, M. (2017) [Relationship between quality of life, physical activity, nutrition, glycemic control and sarcopenia in older adults with type 2 diabetes mellitus]. NutrHosp, 34(5), 1198-1204. doi:10.20960/nh.1070

    [11] Beaudart, C., Zaaria, M., Pasleau, F., Reginster, J. Y., & Bruyère, O. (2017). Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS One, 12(1), e0169548. doi:10.1371/journal.pone.0169548

    [12] Sayer, A. A., Syddall, H., Martin, H., Patel, H., Baylis, D., & Cooper, C. (2008). The developmental origins of sarcopenia. J Nutr Health Aging, 12(7), 427-432. doi:10.1007/bf02982703

    [13] Park, S. W., Goodpaster, B. H., Strotmeyer, E. S., de Rekeneire, N., Harris, T. B., Schwartz, A. V., . . . Newman, A. B. (2006). Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes, 55(6), 1813-1818. doi:10.2337/db05-1183

    [14] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., . . . Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract, 157, 107843. doi:10.1016/j.diabres.2019.107843

    [15] Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., . . . Vollmer, S. (2018). Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care, 41(5), 963-970. doi:10.2337/dc17-1962

    [16] Defronzo, R. A. (2009). Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 58(4), 773-795. doi:10.2337/db09-9028

    [17] Abdul-Ghani, M. A., Tripathy, D., & DeFronzo, R. A. (2006). Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care, 29(5), 1130-1139. doi:10.2337/diacare.2951130

    [18] DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., . . . Weiss, R. (2015). Type 2 diabetes mellitus. Nat Rev Dis Primers, 1, 15019. doi:10.1038/nrdp.2015.19

    [19] Kim, T. N., Park, M. S., Yang, S. J., Yoo, H. J., Kang, H. J., Song, W., . . . Choi, K. M. (2010). Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care, 33(7), 1497-1499. doi:10.2337/dc09-2310

    [20] Kouw, I. W., Gorissen, S. H., Burd, N. A., Cermak, N. M., Gijsen, A. P., van Kranenburg, J., & van Loon, L. J. (2015). Postprandial Protein Handling Is Not Impaired in Type 2 Diabetes Patients When Compared With Normoglycemic Controls. J Clin Endocrinol Metab, 100(8), 3103-3111. doi:10.1210/jc.2015-1234

    [21] Leenders, M., Verdijk, L. B., van der Hoeven, L., Adam, J. J., van Kranenburg, J., Nilwik, R., & van Loon, L. J. (2013). Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc, 14(8), 585-592. doi:10.1016/j.jamda.2013.02.006

    [22] Lee, S., & Shin, S. (2013). Effectiveness of virtual reality using video gaming technology in elderly adults with diabetes mellitus. Diabetes Technol Ther, 15(6), 489-496. doi:10.1089/dia.2013.0050

    [23] Kim, Choi. (2019). Sarcopenia and fatty liver disease. Hepatology International 13(6):674-687. doi:10.1007/s12072-019-09996-7.

    [24] Bouchi, R. Fukuda. (2017). Insulin treatment attenuates decline of muscle mass in Japanese patients with type 2 diabetes. Calcif Tissue Int. 101(1):1-8. doi: 10.1007/s00223-017-0251-x.

    [25] Mori. Nishide. Okuno. (2019). Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrology. 20(1):105. doi: 10.1186/s12882-019-1271-8.

    [26] Frontera, W, R. Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 96(3):183-95. doi: 10.1007/s00223-014-9915-y.

    [27] Lin, X., Ruiz, J., Bajraktari, I., Ohman, R., Banerjee, S., Gribble, K., . . . Mankodi, A. (2014). Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J Biol Chem, 289(19), 13615-13626. doi:10.1074/jbc.M114.550418

    [28] Flynn, J. M., Meadows, E., Fiorotto, M., & Klein, W. H. (2010). Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse. PLoS One, 5(10), e13535. doi:10.1371/journal.pone.0013535

    [29] Zammit, P. S. (2017). Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol, 72, 19-32. doi:10.1016/j.semcdb.2017.11.011

    [30] Hernández-Hernández, J. M., García-González, E. G., Brun, C. E., & Rudnicki, M. A. (2017). The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol, 72, 10-18. doi:10.1016/j.semcdb.2017.11.010

    [31] Molkentin, J. D., & Olson, E. N. (1996). Defining the regulatory networks for muscle development. Curr Opin Genet Dev, 6(4), 445-453. doi:10.1016/s0959-437x(96)80066-9

    [32] Ganassi, M., Badodi, S., Ortuste Quiroga, H. P., Zammit, P. S., Hinits, Y., & Hughes, S. M. (2018). Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun, 9(1), 4232. doi:10.1038/s41467-018-06583-6

    [33] Myer, A., Olson, E. N., & Klein, W. H. (2001). MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells. Dev Biol, 229(2), 340-350. doi:10.1006/dbio.2000.9985

    [34] Higashioka, K., Koizumi, N., Sakurai, H., Sotozono, C., & Sato, T. (2017). Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9. Stem Cells Int, 2017, 9210494. doi:10.1155/2017/9210494

    [35] Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., & Klein, W. H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364(6437), 501-506. doi:10.1038/364501a0

    [36] Takada, F., Vander Woude, D. L., Tong, H. Q., Thompson, T. G., Watkins, S. C., Kunkel, L. M., & Beggs, A. H. (2001). Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci U S A, 98(4), 1595-1600. doi:10.1073/pnas.041609698

    [37] Frey, N., Richardson, J. A., & Olson, E. N. (2000). Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A, 97(26), 14632-14637. doi:10.1073/pnas.260501097

    [38] Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C., & Healy, J. I. (1997). Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 386(6627), 855-858. doi:10.1038/386855a0

    [39] Wang, H., Zhu, Z., Wang, H., Yang, S., Mo, D., & Li, K. (2006). Characterization of different expression patterns of calsarcin-1 and calsarcin-2 in porcine muscle. Gene, 374, 104-111. doi:10.1016/j.gene.2006.01.035

    [40] Arola, A. M., Sanchez, X., Murphy, R. T., Hasle, E., Li, H., Elliott, P. M., . . . Bowles, N. E. (2007). Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol Genet Metab, 90(4), 435-440. doi:10.1016/j.ymgme.2006.12.008

    [41] Ren, R. M., Liu, H., Zhao, S. H., & Cao, J. H. (2016). Targeting of miR-432 to myozenin1 to regulate myoblast proliferation and differentiation. Genet Mol Res, 15(4). doi:10.4238/gmr15049313

    [42] Moriscot, A. S., Baptista, I. L., Bogomolovas, J., Witt, C., Hirner, S., Granzier, H., & Labeit, S. (2010). MuRF1 is a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber trophicity and maintenance. J Struct Biol, 170(2), 344-353. doi:10.1016/j.jsb.2010.02.001

    [43] Ma, J., Chai, J., Shang, Y., Li, Y., Chen, R., Jia, J., . . . Peng, J. (2015). Swine PPAR-γ2 expression upregulated in skeletal muscle of transgenic mice via the swine Myozenin-1 gene promoter. Transgenic Res, 24(3), 409-420. doi:10.1007/s11248-014-9849-1

    [44] Barroso, I., Gurnell, M., Crowley, V. E., Agostini, M., Schwabe, J. W., Soos, M. A., . . . O'Rahilly, S. (1999). Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 402(6764), 880-883. doi:10.1038/47254

    [45] Vidal-Puig, A. Jimenez-Linan, M. (1996). Regulation of PPARgamma gene expression by nutrition and obesity in rodents. J Clin Invest. 97(11):2553-61. doi: 10.1172/JCI118703.

    [46] Kraegen, E. W., James, D. E., Jenkins, A. B., & Chisholm, D. J. (1985). Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol, 248(3 Pt 1), E353-362. doi:10.1152/ajpendo.1985.248.3.E353

    [47] Braissant, O., Foufelle, F., Scotto, C., Dauça, M., & Wahli, W. (1996). Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 137(1), 354-366. doi:10.1210/endo.137.1.8536636

    [48] Verma, N. K., Singh, J., & Dey, C. S. (2004). PPAR-gamma expression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol, 143(8), 1006-1013. doi:10.1038/sj.bjp.0706002

    [49] Hevener, A. L., He, W., Barak, Y., Le, J., Bandyopadhyay, G., Olson, P., . . . Olefsky, J. (2003). Muscle-specific Pparg deletion causes insulin resistance. Nat Med, 9(12), 1491-1497. doi:10.1038/nm956

    [50] Charron, M. J., Brosius, F. C., 3rd, Alper, S. L., & Lodish, H. F. (1989). A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci U S A, 86(8), 2535-2539. doi:10.1073/pnas.86.8.2535

    [51] Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., & Seino, S. (1989). Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem, 264(14), 7776-7779.

    [52] Favaretto, F., Milan, G., Collin, G. B., Marshall, J. D., Stasi, F., Maffei, P., . . . Naggert, J. K. (2014). GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS One, 9(10), e109540. doi:10.1371/journal.pone.0109540

    [53] Armoni, M., Harel, C., & Karnieli, E. (2007). Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab, 18(3), 100-107. doi:10.1016/j.tem.2007.02.001

    [54] Hamza, N., Berke, B., Cheze, C., Le Garrec, R., Lassalle, R., Agli, A. N., . . . Moore, N. (2011). Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol, 133(2), 931-933. doi:10.1016/j.jep.2010.11.019

    [55] Tam, C. S., Power, J. E., Markovic, T. P., Yee, C., Morsch, M., McLennan, S. V., & Twigg, S. M. (2015). The effects of high-fat feeding on physical function and skeletal muscle extracellular matrix. Nutr Diabetes, 5(12), e187. doi:10.1038/nutd.2015.39

    [56] Martinez-Huenchullan, S. F., McLennan, S. V., Ban, L. A., Morsch, M., Twigg, S. M., & Tam, C. S. (2017). Utility and reliability of non-invasive muscle function tests in high-fat-fed mice. Exp Physiol, 102(7), 773-778. doi:10.1113/ep086328

    [57] Lee, S. R., Khamoui, A. V., Jo, E., Park, B. S., Zourdos, M. C., Panton, L. B., . . . Kim, J. S. (2015). Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clin Exp Res, 27(4), 403-411. doi:10.1007/s40520-015-0316-5

    [58] Frias Fde, T., de Mendonça, M., Martins, A. R., Gindro, A. F., Cogliati, B., Curi, R., & Rodrigues, A. C. (2016). MyomiRs as Markers of Insulin Resistance and Decreased Myogenesis in Skeletal Muscle of Diet-Induced Obese Mice. Front Endocrinol (Lausanne), 7, 76. doi:10.3389/fendo.2016.00076

    [59] Zhao, P., Ming, Q., Xiong, M., Song, G., Tan, L., Tian, D., . . . Yang, X. (2018). Dandelion Chloroform Extract Promotes Glucose Uptake via the AMPK/GLUT4 Pathway in L6 Cells. Evid Based Complement Alternat Med, 2018, 1709587. doi:10.1155/2018/1709587

    [60] Huang, C., Somwar, R., Patel, N., Niu, W., Török, D., & Klip, A. (2002). Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes, 51(7), 2090-2098. doi:10.2337/diabetes.51.7.2090

    [61] Furukawa, T., Tanimoto, K., Fukazawa, T., Imura, T., Kawahara, Y., & Yuge, L. (2018). Simulated microgravity attenuates myogenic differentiation via epigenetic regulations. NPJ Microgravity, 4, 11. doi:10.1038/s41526-018-0045-0

    [62] Nihashi, Y., Umezawa, K., Shinji, S., Hamaguchi, Y., Kobayashi, H., Kono, T., . . . Takaya, T. (2019). Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Sci Rep, 9(1), 16527. doi:10.1038/s41598-019-52946-4

    [63] Shen, C. A., Chai, J. K., Ma, L., Hai, H. L., & Zhang, L. (2011). [Regulatory effect of glucagon-like peptide-1 on cell proliferation of skeletal myoblast strain L6 and its possible signal mechanism]. Zhonghua Shao Shang Za Zhi, 27(5), 332-336.

    [64] Kim, M. J., Jung, B. K., Cho, J., Song, H., Pyo, K. H., Lee, J. M., . . . Chai, J. Y. (2016). Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes. Korean J Parasitol, 54(2), 147-154. doi:10.3347/kjp.2016.54.2.147

    [65] Virtue, S., Petkevicius, K., Moreno-Navarrete, J. M., Jenkins, B., Hart, D., Dale, M., . . . Vidal-Puig, A. (2018). Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility. Cell Rep, 24(8), 2005-2012.e2007. doi:10.1016/j.celrep.2018.07.063

    [66] Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev, 93(3), 993-1017. doi:10.1152/physrev.00038.2012

    [67] Owens, J., Moreira, K., & Bain, G. (2013). Characterization of primary human skeletal muscle cells from multiple commercial sources. In vitro cellular & developmental biology. Animal, 49(9), 695–705.

    [68] Jiwlawat, S., Lynch, E., Glaser, J., Smit-Oistad, I., Jeffrey, J., Van Dyke, J. M., & Suzuki, M. (2017). Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation; research in biological diversity, 96, 70–81.

    下載圖示 校內:2025-04-30公開
    校外:2025-04-30公開
    QR CODE