| 研究生: |
郭彧伶 Kuo, Yu-Ling |
|---|---|
| 論文名稱: |
具二維可調式定力輸出之力量控制機構設計 Design of a Force Regulation Mechanism with Two-Dimensional Adjustable Constant-Force Outputs |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 二維零勁度機構 、二維順應性機構 、力量控制 、定力機構 、輸出力調控 |
| 外文關鍵詞: | compliant mechanism, constant-force mechanism, two-dimensional, zero stiffness, planar spring |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影響研磨與去毛邊對物體表面品質差異的關鍵原因為是否保持定接觸力於刀具與物體間,如何有效且精確地達成定接觸力之力量調控是門重要的課題。目前自動化工廠中在研磨刀具上裝置多軸力感測器提供力量回授資訊以控制接觸力,使得機器手臂須不斷修正研磨路徑以保持研磨刀具與物體間的定接觸力,然而此種方式不僅耗時且增加了研磨系統的複雜度。因此順應性研磨刀具與主動式氣動法蘭裝置開始應用於研磨系統中,不須改變機器手臂的路徑規劃,藉由刀具的位移即可順應物體表面的幾何外型同時輸出定力,然而順應刀具以偏擺達成二維順應位移而減少與物體的接觸面積且主動式氣動法蘭僅能達成一維的順應。因此本論文延伸零勁度機構的概念,設計一新型可調被動式二維力量控制機構,機構置於機器手臂與物體之間並可安裝任一刀具,機構不需裝配感測器即可取代精密控制之主動控制系統,達成降低成本、提升可靠度之需求,同時於機構操作區間中提供恆與刀具位移方向相對之可調徑向定接觸力輸出。
本論文利用正負勁度疊加的方式設計零勁度機構並以平面彈簧達成在有效空間中高勁度及高壓縮量的需求;此外,透過壓縮彈簧的配置實現徑向方向的零勁度機構及徑向預載的調整使得在操作角度範圍內減少定力大小誤差;接著建立彈簧數學模型,對參數進行最佳化設計,使得輸出力量波動最小,具有力量穩定的特性。最後,將理論分析結果輔以模擬軟體驗證其合理性,加工製造力量控制機構實體進行實驗驗證其力量調控之可行性,並建立動摩擦力數學模型與探討動摩擦力對機構輸出力影響,期許設計新型力量控制機構能提供工業二維穩定力量調控之解決方案。
Controlling the contact force on workpieces has been a challenging task for industrial grinding/deburring operations. Its realization often requires a grinding spindle with a multi-axis force sensor and controller feedback. The use of sensors and control is costly and introduces extra complexity for grinding tools. To improve the polishing quality of handling workpieces of irregular contours, this paper presents a novel force regulation mechanism (FRM) to be installed on grinding tools. FRM can produce an almost invariant oUJpUJ force over a limited range of inpUJ displacement. WithoUJ using additional sensor and force controller, adjustable FRMs can passively produce an adjustable constant oUJpUJ force to interact with the working environment. In the literature, one-dimensional FRMs have been developed for various applications. This paper presents the design of a novel FRM that can produce adjustable constant force in two dimensions. Because an adjustable constant force can be produced regardless of its radial direction, the proposed adjustable FRM can be used in applications that require two-dimensional force regulation. In this paper, the design formulation and simulation results are presented and discussed. Equations to minimize the oUJpUJ force variation are given to optimally choose the design parameters. A prototype of the two-dimensional FRM is tested to demonstrate the effectiveness and accuracy of adjustable force regulation. This novel FRM is expected to be used in machines or robots to interact friendly with the environment.
[1] 介紹磨料流(AFM)、電化學(ECM)與熱力(TEM)三種去毛邊加工方法
https://extrudehone.com/
[2] Donohue, B. (2007, April). How it works – Burrs and Deburrings. Today’s Machining World Archive. Vol. 3, Issue 04, p.50 – 56
[3] 電化學去毛邊加工方法
https://www.norwoodmedical.com/capabilities/electrochemical-machining
[4] Kenda, J., Pušavec, F., & Kopac, J. (2014). Modeling and energy efficiency of abrasive flow machining on tooling industry case study. Procedia CIRP, 13, 13–18.
[5] ATL公司販售熱力去毛邊設備相關資料
https://www.atl-luhden.de/index.php/en/2014-01-15-10-28-04/method
[6] Misubishi Electric – changes for the burr
http://www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/apppack/polish/index.html
[7] SHL AUJomation Technology
http://www.shl.ag/cms/en/applications/technologies/deburring/
[8] Kim, J.-D., & Choi, M.-S. (1997). Study on magnetic polishing of free-form surfaces. International Journal of Machine Tools and Manufacture, 37(8), 1179–1187.
[9] Tsai, M. J., Huang, J. F., & Kao, W. L. (2009). Robotic polishing of precision molds with uniform material removal control. International Journal of Machine Tools and Manufacture, 49(11), 885–895.
[10] Kazerooni, H. (1988). AUJomated robotic deburring using impedance control. IEEE Control Systems Magazine, 8(1), 21–25.
[11] Duelen, G., Munch, H., Surdilovic, D., & Timm, J. (n.d.). AUJomated force control schemes for robotic deburring: Development and experimental evaluation. Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and AUJomation.
[12] Nagata, F., Hase, T., Haga, Z., Omoto, M., & Watanabe, K. (2007). CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics, 17(4-5), 207–216.
[13] Song, H.-C., & Song, J.-B. (2012). Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching. International Journal of Precision Engineering and Manufacturing, 14(1), 85–91.
[14] Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and CompUJer-Integrated Manufacturing, 49, 54–65.
[15] ATI – Axially Compliant Deburring tools
https://www.ati-ia.com/products/deburr/deburring_ac_main.aspx
[16] Ferrotics – Active Contact Flange
https://www.ferrobotics.com/en/
[17] Sunrise Instruments iGrinder
http://www.srisensor.com.cn/shop/?type=list&classid=75
[18] engraflexx ELC with electric high frequency spindle
http://gravostar.com/en/engraflexx-elc-with-electric-high-frequency-spindle.html
[19] ATI – Radially Compliant Deburring tools
https://www.ati-ia.com/products/deburr/deburring_rc_main.aspx
[20] engraflexx AP with integrated compressed air spindle
http://gravostar.com/en/engraflexx-ap-with-integrated-compressed-air-spindle.html
[21] engraflexx type ESP with electric high frequency spindle
http://gravostar.com/en/engraflexx-type-esp-with-electric-high-frequency-spindle.html
[22] RAD Variable-Speed, Radially Compliant OmniForce™ Deburring Tool
http://rad-ra.com/rad-home/deburring-tools/
[23] SAMPAS precision deburring cells
https://www.sampas.de/en/our-facilities/deburring.html
[24] Liao, L., Xi, F. (Jeff), & Liu, K. (2008). Modeling and control of aUJomated polishing/deburring process using a dual-purpose compliant toolhead. International Journal of Machine Tools and Manufacture, 48(12-13), 1454–1463.
[25] Sun, Y. C., and C. Y. Lai. (2015). "Robotic finishing." Handbook of Manufacturing Engineering and Technology. Springer London, 2445-2468.
[26] Chen, Jiangdong, et al. "Design and analysis of a compliant parallel polishing toolhead." International conference on mechanical design. Springer, Singapore, 2017.
[27] Tsai, M. J., & Huang, J. F. (2006). Efficient aUJomatic polishing process with a new compliant abrasive tool. The International Journal of Advanced Manufacturing Technology, 30(9-10), 817–827
[28] Spring, V. Constant force springs.
http://www.vulcanspring.com/conforce-constant-force-springs.
[29] 王萌, et al. 空間恆力矩無源驅動裝置, 中華人民共和國國家知識產權局, Editor 2013.
[30] Y.-H. Chen and C.-C. Lan. (2012). “An adjustable constant-force mechanism for adaptive end-effector operations”. Journal of Mechanical Design, 2012. 134(3): p. 031005.
[31] Zhao, J., Huang, Y., Yang, Y., & Gao, R. (2012). Dynamics of a novel bistable mechanism with mechanical-magnetic coupled structure. Journal of Central SoUJh University, 19(7), 1853–1858.
[32] Huang, H.-T., & Kuo, C.-H. (2018). Design of constant-force mechanisms based on straight-line linkages. Volume 5B: 42nd Mechanisms and Robotics Conference.
[33] Chen, C.-C., & Lan, C.-C. (2017). An accurate force regulation mechanism for high-speed handling of fragile objects using pneumatic grippers. IEEE Transactions on AUJomation Science and Engineering, 1–9.
[34] Wang, P., & Xu, Q. (2017). Design of a flexure-based constant-force XY precision positioning stage. Mechanism and Machine Theory, 108, 1–13.
[35] Wang, P., & Xu, Q. (2016). Design of a compact compliant constant-force XY precision positioning stage. 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA).
[36] Zhang, X., & Xu, Q. (2019). Design and analysis of a 2-DOF compliant gripper with constant-force flexure mechanism. Journal of Micro-Bio Robotics.
[37] Basanez, L., & Rosell, J. (2005). Robotic polishing systems. IEEE Robotics & AUJomation Magazine, 12(3), 35–43.
[38] iA – ROBOTICS with ATI – Radially Compliant Deburring tools
https://ia-robotics.com/
[39] Y.-S. Wu and C.-C. Lan. “Design of a linear variable-stiffness mechanism using preloaded bistable beams”. in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[40] 楊勝安,可承受大範圍負載及大位移之零勁度隔振機構,國立成功大學機械工程學系碩士學位論文,中華民國一零四年十一月。
[41] R.C. Juvinall and K.M. Marshek, Machine Component Design. John Wiley and Sons. p. 312-344.
[42] R.G. Budynas and J.K. Nisbett, Shigley's Mechanical Engineering Design. 2014: WCB/McGraw-Hill. 1104.
[43] R.C. Juvinall and K.M. Marshek, Machine Component Design. John Wiley and Sons. p. 497-504.
[44] 小栗富士雄與小栗達男(2005)。標準機械設計圖表便覽第五版(17-13)。眾文圖書股份有限公司。
[45] Y.-J. Cheng and C.-C. Lan, “DistribUJed shape optimization of compliant mechanisms using intrinsic functions”. Journal of Mechanical Design, 2008. 130(7): p. 072304.
[46] K.-M. Lee and C.-C. Lan, “Generalized shooting method for analyzing compliant mechanisms with curved members”. Journal of Mechanical Design, 2006. 128(4): p. 765-775.
[47] Norberto Pires, J., Afonso, G., & Estrela, N. (2007). Force control experiments for industrial applications: a test case using an industrial deburring example. Assembly AUJomation, 27(2), 148-156.
[48] Valentin, L. P. (2010). Contact mechanics and friction: physical principles and applications. Germany Google Scholar, p.133-154
[49] THK有限公司
https://www.thk.com/?q=tw
校內:2024-07-02公開