| 研究生: |
蔡孟蓉 Tsai, Meng-Rung |
|---|---|
| 論文名稱: |
整合輪班與排班問題之研究:以台鐵乘務員為例 The Integrated Crew Scheduling and Rostering Problem: A Case Study of Taiwan Railways Administration |
| 指導教授: |
林東盈
Lin, Dung-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 人員排班 、人員輪班 、列車長排班 、變數產生法 、分支定價法 、深度優先搜尋法 |
| 外文關鍵詞: | Crew Scheduling, Crew Rostering, Staff Management, Branch-and-Price-and-Cut, Rail Transport, Depth-first Search |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以台灣鐵路管理局列車長排班與輪班問題為研究對象。列車長排班為鐵道行車服務管理計畫的最後階段,在列車時刻表已在前置的規劃作業中確立的狀況下,如何在遵守工作規則下排出合理的輪班表成為一大難題。傳統人工作業將每日排班與輪班分別施作,除了作業困難以外也可能造成人力的浪費,整合為一階段求解問題可更有效率的規劃人員使用計畫。本研究以台鐵高雄運務段乘務人員排班為例,建立排班及輪班問題整合的整數規劃模式,並設計演算法求解,同時比較傳統作法與整合求解方式之結果,實證研究結果顯示此演算法可運用於實例、且整合模式較能有效運用人力。
Train crew management is an imperative task in a passenger railway system and is typically decomposed into two sub-problems: crew scheduling problem and crew rostering problem. The decomposition can make the problem easier to solve but may produce degraded solutions. In this research, we propose a formulation to integrate these two critical sub-problems and develop a branch-and-price-and-cut (BPC) and a depth-first search-based (DFS-based) algorithm to solve the composite problem. The numerical results show that an integrated framework can yield better solutions than the decomposition strategy. Furthermore, the proposed BPC can solve real-world problems and obtain scheduling/rostering plans that are at least as good as those developed by the rail company. Finally, results also show that the rostering constraints have a more notable effect on the results compared to scheduling constraints in the integrated framework. This type of observation can only be accurately characterized when these two sub-problems are considered in an integrated manner.
1. Bach, L., Dollevoet, T., & Huisman, D. (2016). Integrating Timetabling and Crew Scheduling at a Freight Railway Operator. Transportation Science, 50(3), 878-891.
2. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research, 46(3), 316-329. doi: 10.1287/
3. Bartholdi, J. J. (1981). A Guaranteed-Accuracy Round-Off Algorithm for Cyclic Scheduling and Set Covering. Operations Research, 29(3), 501-510.
4. Bianco, L., Bielli, M., Mingozzi, A., Ricciardelli, S., & Spadoni, M. (1992). A Heuristic-Procedure for the Crew Rostering Problem. European Journal of Operational Research, 58(2), 272-283.
5. Bussieck, M. R., Winter, T., & Zimmermann, U. T. (1997). Discrete optimization in public rail transport. Mathematical Programming, 79, 415-444.
6. Caprara, A., Fischetti, M., Guida, P. L., Toth, P., & Vigo, D. (1999). Solution of large-scale railway crew planning problems: the Italian experience. Computer-Aided Transit Scheduling, Proceedings, 471, 1-18.
7. Caprara, A., Fischetti, M., Toth, P., Vigo, D., & Guida, P. L. (1997). Algorithms for railway crew management. Mathematical Programming, 79(1-3), 125-141.
8. Caprara, A., Toth, P., Vigo, D., & Fischetti, M. (1998). Modeling and solving the crew rostering problem. Operations Research, 46(6), 820-830.
9. Chu, S. C. K., & Chan, E. C. H. (1998). Crew scheduling of light rail transit in Hong Kong: From modeling to implementation. Computers & Operations Research, 25(11), 887-894.
10. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Nott, H., & Sier, D. (2001). An integrated optimization model for train crew management. Annals of Operations Research, 108(1-4), 211-224.
11. Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153(1), 3-27.
12. Freling, R., Lentink, R. M., & Wagelmans, A. P. M. (2004). A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm. Annals of Operations Research, 127(1-4), 203-222.
13. Ghoseiri, K., Szidarovszky, F., & Asgharpour, M. J. (2004). A multi-objective train scheduling model and solution. Transportation Research Part B-Methodological, 38(10), 927-952.
14. Hoffmann, K., Buscher, U., Neufeld, J. S., & Tamke, F. (2017). Solving Practical Railway Crew Scheduling Problems with Attendance Rates. Business & Information Systems Engineering, 59(3), 147-159.
15. Huisman, D. (2007). A column generation approach for the rail crew re-scheduling problem. European Journal of Operational Research, 180(1), 163-173.
16. Huisman, D., Kroon, L. G., Lentink, R. M., & Vromans, M. J. C. M. (2005). Operations Research in passenger railway transportation. Statistica Neerlandica, 59, 467-497.
17. Jutte, S., Albers, M., Thonemann, U. W., & Haase, K. (2011). Optimizing Railway Crew Scheduling at DB Schenker. Interfaces, 41(2), 109-122.
18. Kohl, N., & Karisch, S. E. (2004). Airline Crew Rostering: Problem Types, Modeling, and Optimization. Annals of Operations Research, 127, 223-257.
19. Kwan, R. S. K. (2011). Case studies of successful train crew scheduling optimisation. Journal of Scheduling, 14(5), 423-434.
20. Lezaun, M., Perez, G., & de la Maza, E. S. (2007). Rostering in a rail passenger carrier. Journal of Scheduling, 10(4-5), 245-254.
21. Lin, D. Y. (2014). A Dantzig-Wolfe decomposition algorithm for the constrained minimum cost flow problem. Journal of the Chinese Institute of Engineers, 37(5), 659-669.
22. Liu, M., Haghani, A., & Toobaie, S. (2010). Genetic Algorithm-Based Column Generation Approach to Passenger Rail Crew Scheduling. Transportation Research Record(2159), 36-43.
23. Möller, J. (2002). Seminar on Algorithms and Models for Railway Optimization Crew scheduling. University of Konstanz, ller-seminar.
24. Nishi, T., Sugiyama, T., & Inuiguchi, M. (2014). Two-level decomposition algorithm for crew rostering problems with fair working condition. European Journal of Operational Research, 237(2), 465-473.
25. Potthoff, D., Huisman, D., & Desaulniers, G. (2010). Column Generation with Dynamic Duty Selection for Railway Crew Rescheduling. Transportation Science, 44(4), 493-505.
26. Rezanov, N. J., & Ryan, D. M. (2010). The train driver recovery problem-A set partitioning based model and solution method. Computers & Operations Research, 37(5), 845-856.
27. Saddoune, M., Desaulniers, G., Elhallaoui, I., & Soumis, F. (2012). Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation. Transportation Science, 46(1), 39-55. doi: 10.1287/trsc.1110.0379
28. Souai, N., & Teghem, J. (2009). Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. European Journal of Operational Research, 199(3), 674-683. doi: 10.1016/j.ejor.2007.10.065
29. Taiwan-Railway-Administration. (2013). Specific Costs and Results of Various Countries. Statical Report of TRA. 2014, from http://www.railway.gov.tw/Upload/intro/file/YearReport/t65.pdf
30. Taiwan-Railway-Administration. (2017). Volume of Passenger Traffic. Statical Report of TRA. 2018, from https://www.railway.gov.tw/Upload/UserFiles/10703tt1.pdf
31. Tarjan, R. (1972). Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing, 1(2), 146-160.
32. Veelenturf, L. P., Potthoff, D., Huisman, D., & Kroon, L. G. (2012). Railway crew rescheduling with retiming. Transportation Research Part C-Emerging Technologies, 20(1), 95-110.
校內:2024-07-01公開