簡易檢索 / 詳目顯示

研究生: 楊書寧
Yang, Shu-Ning
論文名稱: 中孔洞氧化矽空心球在液晶之散射機制與溫度之關係
The correlation between the scattering mechanism of mesoporous silica hollow sphere in LCs and temperature
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 液晶穿透光譜介電係數
外文關鍵詞: Liquid crystals, Light scattering, dielectric
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在液晶中摻雜中孔洞二氧化矽空心球(MPSHSs-LCs)中發現中孔洞二氧化矽空心球沒有聚集而且還有良好的分布,這結果不同於以往液晶內摻雜顆粒之情況。我們認為中孔洞二氧化矽空心球和液晶之間應有新的物理其應該有不同類型的錨定來自於中孔洞二氧化矽空心球的表面結構。為了瞭解該現象,我們在不同的溫度下進行MPSHSs-LC的散射測量,研究散射域和環境溫度之間的相關性,並討論其散射與中孔洞二氧化矽空心球濃度的相關性。此外,介電測定還進行協助研究的相轉變溫度的變化過程中,特別是在相變的溫度附近的實數和虛數部分可以反映出液晶相應鬆弛頻率與震盪模態。我們也同時測量了傳統的液晶散射型元件包含:多分子聚合物型液晶元件(PDLC),膽固醇型液晶元件(CLC),還有實心二氧化矽球液晶元件來佐證比對我們的想法。而平均場理論也可以用來解釋我們的實驗結果。平均場理論的假設可以很好地解釋T_ni(向列相 - 各向同性相兩者相變溫度)與中孔洞二氧化矽空心球大小和濃度的關係。我們發現具有體積小的中孔洞二氧化矽空心球具有較大的曲率因此對周圍的液晶影響力較大。
    我們還通過散射實驗與示差掃描量熱儀(DCS)實驗中結果的相呼應其在相變點有一個透明向列態(Transparent-nematic)。在MPSHSs的情況下,該傾角是相當小的並是非常紊亂的狀態所以在較大尺寸或更高濃度的球比例下透明向列態會被抑制而不會出現。

    Mesoporous silica hollow spheres (MPSHSs) doped in liquid crystals (MPSHSs-LCs) exhibits no aggregation and well-dispersed phenomenon, which reveals some new physics among MPSHSs and LCs. There should be different type of anchoring originated from the surface structure of MPSHSs. In order to realize the phenomenon, we perform the scattering measurement of MPSHSs-LCs with varied temperature to study the correlation between scattering domain and environment temperature, and discuss the dependence of the MPSHS concentration. Besides, dielectric measurement also performed to assist the study the phase transition during the temperature variation, especially in the temperature of phase transition. The real part and the image part of dielectrics result reflect the corresponding relaxation frequency of LCs and isotropic state, respectively. Polymer-dispersed in LCs (PDLCs), chiral LCs (CLCs) and solid silica spheres (SSSs) doped in LCs were also adopted in this work for comparison. We also use the mean field theory to explain our experimental results. The assumption of anisotropic anchoring in the mean field theory can well explain the relation between Tni (nematic-isotropic transition temperature) and the size and concentration of MPSHSs. MPSHS with small size has larger curvature and lead anchoring from the pores of MPSHSs to be strong and random. Thus, larger affected area around MPSHSs is formed at the case of small MPSHSs.
    We also find the similar behavior in DCS experiments by scattering experiment. A dip appears in the scattering experiment with scan temperature. An opaque state exists on the period of nematic-isotropic transition, which is a transparent nematic state in DSC experiment. In the case of MPSHSs, the dip is quite small and is suppressed as the disorder state overcome the transparent nematic state at larger size or higher concentration. By using two series experiments with different kind of LC scattering devices, the correlation with MSPHS and scattering were confirmed.

    Abstract I 摘要 II 致謝 II CONTECT IV List of tables VII List of figures VIII Chapter 1 INTRIDUCTION 1 1.1 Basic of Liquid crystals 1 1.1.1 Origin of Liquid Crystals 1 1.1.2 Nematic and Cholesteric liquid crystals 1 1.1.3 Anisotropic properties/ Birefringence 3 1.1.4 Order parameter for a cell 4 1.1.5 Elastic continuum theory 5 1.1.6 Surface anchoring force 6 1.2 Phase transition of liquid crystals 9 1.3 Porous materials doped in Liquid crystals 10 1.3.1 Electrical reorientation of liquid crystal molecules inside cylindrical pore 12 1.4 Particles doped in Liquid Crystals 14 1.5 Mesoporous silica hollow spheres 15 Chapter 2 Theory 18 2.1 Phase transition analyzed by DSC 18 2.2 Scattering mechanism 20 2.2.1 Light scattering of polymer-dispersed liquid crystal display 21 2.2.2 Light scattering of cholesteric liquid crystal 22 2.2.3 Light scattering of Mesoporous silica hollow sphere 22 2.2.4 Light scattering of non-porous silica surface sphere 24 2.2.5 Light scattering with temperature in NPs doped in LCs 25 2.3 Dielectric relaxation spectroscopy 27 2.3.1 The relaxation mode 28 2.3.2 Debye model 29 2.3.3 Real part of the dielectric constant 30 2.3.4 The image part of dielectric constant 31 2.3.5 Summary of dielectrics measurement 32 2.4 Mean field molecular theory 33 2.5. The analysis of MSHS-LCs by transmission, dielectrics measurement and Dilution effect…………………………………………………………………………..36 Chap 3 EXPERIMENT 37 3.1 MSPHSs preparation 37 3.2 Differential scanning calorimetry analysis 38 3.3 Light scattering 38 3.4 Dielectrics measurement 39 Chapter 4 40 RESULTS AND DISTRUTION 40 4.1 DSC Experiment 40 4.2 Light scattering 42 4.3 Dielectric spectroscopy 46 4.3.1 Image part of dielectric 46 4.3.2 Summary of MPSHSs in image part dielectrics measurement 56 4.4 Mean-field theory 67 Chapter 5 CONCLUDSION 69 Reference 71

    Reference
    1. Sluckin, Dummer & Stegemeyer, Crystals That Flow classic papers from the history of liquid crystals, London :Taylor & Francis (2004)
    2. Michel Mitov, ChemPhysChem 15, 1245 – 1250 (2014)
    3. Iam-Chon Khoo & Shin-Tson Wu, Optics and nonlinear optics of liquid crytals (1993)
    4. P.G.de Gennes, The physics of liquid crystals, (1993)
    5. D.R. Link, G. Natale, R. Shao, J.E.Maclennan N.A. Clark, E. Korblova, and D.M. Walba, Sience 278, 1924 (1997)
    6. G.Heppke and D. Moro, Science 279, 1872 (1998)
    7. R. Williams, J. Chem. Phys, Vol.50, p1324 (1969)
    8. T. W Stinson and J. D. Lister, Phys Rev. Lett, Vol. 25, p503 (1970)
    9. C.W. Oseen Trans. Faraday Soc., 29, p883 (1933)
    10. F.C Frank, Faraday Soc. Disc 25, p19 (1958)
    11. E. G. Priestley, Nematic Order : The Long Range Orientational Distribution Function Chap 6
    12. F.Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (1997)
    13. G. Barbero & L.R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (2000)
    14. Maxim V. Gorkunov & Georgiy A. Shandryuk & Alina M. Shatalova, Soft Matter 9, 3578 (2013)
    15. Jun Yamamoto & Hajime Tanaka, NATURE ,VOL 409 ,321 (2001)
    16. T. Bellini, N. A. Clark, C. D. Muzny, L. Wu, C. W. Garland, D. W. Schaefer, and B. J. Olivier, Phys. Rev. Lett. 69, 788 (1992).
    17. G. S. Iannacchione, G. P. Crawford, S. Zumer, J.W. Doane, and D. Finotello, Phys. Rev. Lett. 71, 2595 (1993).
    18. Sylwia Całus, Daniel Rau, Patrick Huber, and Andriy V. Kityk, Phys. Rev. E 86, 021701 (2012)
    19. S. Calus, D. Rau, P.Huber, and A.V. Kityk, Phys. Rev. B E86, 021701 (2012)
    20. Georgiy V. Tachenko, New developments in liquid crystals (2009)
    21. Eidenschink, R. and De Jeu, W. H, Electronics Letters, 27(13): 1195 (1997)
    22. Li-Hsuan Hsu, Kuang-Yao Lo, Shih-An Huang, Chi-Yen Huang, & Chung-Sung Yang, APPLIED PHYSICS LETTERS 92, 181112 (2008)
    23. H.Stark, Phys.Rep. 351, 387 (2001)
    24. B. I. Lev et al., Phys. Rev E 65, 021709 (2002)
    25. F Mondiot, Colloidal aggregation and dymatics in anisotropic fluids
    26. G Höhne, WF Hemminger, HJ Flammersheim, Differential scanning calorimetry (2013)
    27. Norman Albon And Julian M. Sturtevant, Proc. Nati. Acad. Sct. USA Vol. 75, No. 5, pp. 2258-2260,(1978)
    28. G. Sinha, C. Glorieux and J. Thoen, Phys. Rev. E: Stat.,Nonlinear, So Matter Phys., 69, 031707.(2004)
    29. T. Bellini, M. Buscagli, C. Chiccoli, F. Mantegazza, P. Pasini and C. Zannoni, Phys. Rev. Lett. , 31, 1008. (2000)
    30. H. Duran, B. Gazdecki, A. Yamashita and T. Kyu, Liq. Cryst., 2005, 32, 815.
    31. Maxim V. Gorkunov & Mikhail A. Osipov, Soft Matter,7,4328 (2011)
    32. S.LEE & C.PARK, Mol Cryst., Vol. 333 pp. 123-134 (1998)
    33. Agilent ,Agilent Basics of Measuring the Dielectric Properties of Materials
    34. Sergij V. Shiyanovskii & Oleg D. Lavrentovich, Liquid Crystals, Vol. 37, 737–745 (2010)
    35. Nigel Mottram, A Model of Dual Frequency Nematic Liquid Crystals
    36. A. R. Brás, M. Dionísio, H. Huth, Ch. Schick, and A. Schönhals
    Phys. Rev. E 75, 22 June (2007)
    37. L. M. Lopatina and J. R. Selinger, Phys. Rev. Lett., 102, 197802 (2009)
    38. Z. Chen and R. Nozaki. J. Chem. Phys. 134, 034505 (2011)
    39. E. B. Barmatov, D. A. Pebalk and M. V. Barmatova, Liq. Cryst., 33, 1059.(2006)
    40. J. P. Straley, Phys. Rev. A: At., Mol., Opt. Phys.10, 1881 (1974)

    無法下載圖示 校內:2021-02-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE