簡易檢索 / 詳目顯示

研究生: 呂建承
Lu, Jian-Cheng
論文名稱: 具有共振磁場擾動在託卡馬克傳輸偏濾器拓撲效應的數值模擬
Numerical simulation of divertor’s topological effects on tokamak transport with resonant magnetic perturbation
指導教授: 西村泰太郎
Yasutaro Nishimura
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 85
中文關鍵詞: 託卡馬克偏濾器幾何共振磁場擾動邊緣局部化模式轉向板
外文關鍵詞: Tokamak, Divertor geometry, Resonant magnetic perturbations, Edge Localized Modes, Divertor plates
相關次數: 點閱:121下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究外部施加的隨機磁場對具有偏濾器幾何的託卡馬克等離子體傳輸的影響。共振磁場擾動可以增強粒子傳輸並消除邊緣局部化模式。當粒子穿過分界面時,粒子撞擊轉向板並可從系統中移除。這個過程不允許運輸擴散。
    在數值模擬中,引導中心運動方程在通量座標和笛卡爾座標中得到了解決。採用封閉場線區域中的通量坐標系,因為它在模式有理面處的諧振的簡單性和正確的響應。笛卡爾座標系由於奇異點的特性而在粒子交叉分離時被應用於粒子運動。生成一個將座標系從一個對象轉換到另一個的映射工具。採用開發的指導中心軌道遵循程式,討論了全面性的密度演化和溫度演化,以及到達偏濾器板的粒子的能譜。

    Effects of externally imposed stochastic magnetic field on plasma transport in tokamak with divertor geometry are investigated. Resonant magnetic perturbations (RMPs) can enhance particle transport and eliminate the Edge Localized Modes (ELMs). When particles cross the separatrix, particles hit the diverted plates and can be removed from the system. This process does not allow the transport to be diffusive.
    In the numerical simulation, guiding center equation of motion is solved both in flux coordinates and Cartesian coordinates. The flux coordinates in the closed field line region are employed, because of its simplicity and correct response to the resonance at the mode rational surfaces. The Cartesian coordinate system is applied to particle motions when particles cross separatrix because of the singularity at the X-point. A mapping tool to transform the coordinate systems from one to the other is generated. Employing the developed guiding center orbit following code, the global density evolution and temperature evolution are discussed, as well as energy spectrum of the particles which reach the divertor plates.

    1. Introduction…………………………………………………………………………1 2. Magnetic structure of divertor geometry in tokamaks…………………………6 2.1 Magnetic field structure in flux coordinates………………………6 2.2 Duffing model ………………………………………………………………23 2.3 Magnetic field line equation of Duffing model in Cartesian coordinates…29 2.4 Coordinate transformation between Cartesian and flux coordinate system……32 3. Solution of guiding center equation of motion…………………………………38 3.1 Derivation of guiding center equation from Littlejohn’s Lagrangian…………38 3.2 Guiding center equation of motion in a flux coordinate system……………43 3.3 Guiding center equation of motion in a Cartesian coordinate system ……49 4. Computational results……………………………………………………………56 4.1 Single particle motion in closed field line region and open field line region in diverter geometry……………………………………………………………………56 4.2 Statistical analysis of multiple particle behavior in pseudo-toroidal geometry.............................62 4.3 Statistical analysis of multiple particle behavior in diverted tokamak geometry…………………………………………………………………………69 5. Summary…………………………………………………………………………81 Bibliography……………………………………………………………………………83

    [1] F. Wagner, et al., "Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak, "Phys. Rev. Lett. 49, 1408 (1982).
    [2] Y. Nishimura, D. Coster, and B. Scott, “Characterization of electrostatic turbulent fluxes in tokamak edge plasmas,” Phys. of Plasmas 11, 115 (2004).
    [3] S. I. Itoh and K. Itoh, “Model of L- to H-Mode Transition in Tokamak,” Phys. Rev. Lett. 60, 22 (1988); P. H. Diamond, and Y. B. Kim, “Theory of mean poloidal flow generation by turbulence,” Phys. Fluids B 3, 7 (1991).
    [4] T. W. Petrie, T. E. Evans, N. H. Brooks, et al., “Results from radiating divertor experiments with RMP ELM suppression and mitigation,” Nucl. Fusion 51, 073003 (2011).
    [5] T. E. Evans, R. A. Moyer, K. H. Burrell, et al., “Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas,” Nature Phys. 2, 419 (2006).
    [6] T. E. Evans, R. A. Moyer, P. R. Thomas, et al., “Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary, ” Phys. Rev. Lett. 92, 23 (2004).
    [7] S. Abdullaev, Magnetic Stochasticity in Magnetically Confined Fusion Plasmas: Chaos of Field Lines and Charged Particle Dynamics, (Springer, Berlin, Germany, 2013), pp. 32-37.
    [8] W. D. D'haeseleer, W. N. Hitchon, J. D. Callen, and J. L. Shohet, Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory, (Springer, Berlin, Germany, 2012), pp.100-112.
    [9] R. G. Littlejohn, “Variational principles of guiding centre motion,” J. Plasma Phys. 29, 111 (1983).
    [10] Y. Nishimura, Y. Xiao, and Z. Lin, “Guiding Center Orbit Studies in a Tokamak Edge Geometry Employing Boozer and Cartesian Coordinates,” Contrib. Plasma Phys. 48, 224 (2008).
    [11] Y. Nishimura, B. Huang, and C.Z. Cheng, “Alpha particle transport in the presence of ballooning type electrostatic driftwaves,” Nucl. Fusion 55, 073016 (2015).
    [12] O. Schmitz, T. E. Evans, M. E. Fenstermacher, et al., “Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D,” Nucl. Fusion 52, 043005 (2012).
    [13] J. Wesson, D. J. Campbell, Tokamaks, (Oxford University Press, Oxford, UK, 2011), p.812.
    [14] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. (Springer, Berlin, Germany, 1992), pp.169-191.
    [15] C. C. Chang, Y. Nishimura, and C. Z. Cheng, “Guiding center orbit following calculation of edge particle and heat transport in stochastic magnetic field,” Contrib. Plasma Phys. 54, 479 (2014).
    [16] D. R. Nicholson, Introduction to Plasma Theory, 2nd ed. (Kreiger, Malabar, 1992), pp. 3-33.
    [17] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems,” Phys. Rep. 52, 263 (1979).
    [18] M. Soler and J. D. Callen, “On measuring the electron heat diffusion coefficient in a tokamak from sawtooth oscillation observations,” Nucl. Fusion 19, 703, (1979).
    [19] H. Takahashi et al., "Observation of SOL current correlated with MHD activity in NBI heated DIII-D tokamak discharges," Nucl. Fusion 44, 1075, (2004).
    [20] N. Metropolis et al., "Equation of state calculations by fast computing machines, "J. Chem. Phys 21, 6, (1953).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE