| 研究生: |
王培睿 Wang, Pei-Ruei |
|---|---|
| 論文名稱: |
全方向輪式機器人之建構及其以立體視覺為基礎之導航 Construction and Stereo Vision Based Navigation of an Omni-directional Wheeled Robot |
| 指導教授: |
蔡清元
Tsay, Tsing-Iuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | VFH法 、全方向輪 、立體視覺 、導航 、避障 |
| 外文關鍵詞: | stereo vision, omni-directional wheel, planar homography, VFH method, obstacle avoidance, navigation |
| 相關次數: | 點閱:112 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來智慧型機器人的發展已經成為機器人學領域中最受矚目的一個方向。智慧型機器人能夠於人類生活的環境中自由的移動,並且協助人類完成許多事情。因此,機器人的導航與在雜亂環境中的避障,就成為一個十分重要的課題。
本篇論文中,建構了一台具有立體視覺的全方向輪式機器人。該機器人裝備了全方向輪式底盤,使其於平面上擁有同時平移以及自轉的能力。因此,可以達成在充滿障礙物的環境中,朝任意方向平移,同時不改變自身方位的擬人化避障行為。障礙物偵測方面,提出了一個利用Planar homography原理分離障礙物影像,並將障礙物影像投影至地板的障礙物偵測方法。避障與導航策略方面,首先討論了著名的VFH法則運用於本研究所建構的機器人時發生的問題,並針對這些問題,發展了一個基於VFH法則的導航策略。所設計的導航策略能夠使機器人擁有擬人化的避障運動模式。
最後,透過實驗結果,證實了機器人的效能以及所提出導航策略之可行性。
The development of the intelligent robots has become the most important direction in robotics. Intelligent robots can move freely in the living environment of humans and help humans to fulfill many tasks. Consequently, the navigation and obstacle avoidance in an object-laden environment become an important issue.
An omni-directional wheeled robot with stereo vision is constructed in this thesis. The mobile robot equipped with an omni-directional wheeled base can move simultaneously and independently in translation and rotation. Therefore, the robot can be controlled to achieve a human-like obstacle avoidance behavior, translating along any direction in an object-laden environment while holding the orientation of the robot. An obstacle extraction method based on planar homography is proposed for the obstacle detection, where obstacle images are perspectively projected on the floor. As to the obstacle avoidance method and the navigation strategy, the problems caused by applying the VFH method to the developed mobile robot are discussed first. A novel navigation strategy based on VFH is then proposed to resolve these problems. Using the proposed navigation strategy, the omni-directional mobile robot can exhibit a human-like obstacle avoidance behavior.
Finally, the effectiveness of the developed mobile robot and the practicability of the navigation strategy were verified through the experiments.
[1] J. Borenstein and Y. Koren., “Real-time Obstacle Avoidance for Fast Mobile Robots,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 1179-1187, September 1989.
[2] J. Borenstein and Y. Koren, “The Vector Field Histogram – Fast Obstacle Avoidance for Mobile Robots,” IEEE Journal of Robotics and Automation, Vol. 7, No. 3, pp. 278-288, June 1991.
[3] G. Cheng and A. Zelinsky, “Real-Time Visual Behaviours for Navigating a Mobile Robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol 2, pp.973-980, Nov 1996.
[4] Y. H. Chow and R. Chung, “Obstacle Avoidance of Legged Robot without 3D Reconstruction of the Surroundings,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2316-2321, Apr. 2000.
[5] N. X. Dao, B. J. You and S. R. Oh, “Visual Navigation for Indoor Mobile Robots Using a Single Camera,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1992-1997, Aug. 2005.
[6] A. Fusiello, E. Trucco and A. Verri, “A Compact algorithm for Rectification of Stereo Pairs,” Machine Vision and Applications, pp. 16-22, March 2000.
[7] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, UK, Cambridge University Press, Cambridge, 2000.
[8] O. Khatib, “Real-time Obstacle Avoidance for Manipulators and Mobile Robots,” IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 500-505, March 1985.
[9] M. Okutomi and S. Noguchi, “Extraction of road region using stereo images
,” Proceedings of the 14th International Conference on Pattern Recognition, Vol 1, pp.853 - 856, Aug. 1998.
[10] G. Podnar, “Physical System of a Mobile Robot: Pluto,” Technical Report, The Robotics Institute, Carnegie Mellon University, 1985.
[11] G. Podnar, “The URANUS Mobile Robot, Annual Report,” Technical Report, The Robotics Institute, Carnegie Mellon University, 1985.
[12] K. Tadakuma and S. Hirose, “Development of VmaxCarrier2: Omni-Directional Mobile Robot with Function of Step-Climbing,” Proceedings of IEEE International Conference on Robotics & Automation, pp. 3111-3118, April, 2004.
[13] T. Tylor, S. Geva and W. W. Boles, “Monocular Vision as a Range Sensor,” Proceedings International Conference on Computational Intelligence for Modelling, Control & Automation, pp. 566-575, Aug. 2004.
[14] K. Watanabe, Y. Shiraishi, S.G. Tzafestas, J. Tang, and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, vol.22, pp.315-330, 1998.
[15] Z. Zhang, “A Flexible New Technique for Camera Calibration”, Technical Report MSR-RR-98-71, 1998.
[16] S. Ziaie-Rad, F. Janabi-Sharifi, M.M. DaneshPanah, A.Abdollahi, H. Ostadi, and H .Samani, “A Practical Approach to Control and Self– Localization of Persia Omni Directional Mobile Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp.3473-3479, Aug. 2005.
[17] 吳至仁,自走車系統之障礙物檢測與位置資料之建立,國立成功大學,碩士論文,民國91年
[18] 陳柏安,利用電腦視覺作自走車之障礙物定位與環境掃描,國立成功大學,碩士論文,民國92年
[19] 蕭義麟,具眼在手視覺系統之輪式移動型機械手臂之導航與避障,國立成功大學,碩士論文,民國94年