簡易檢索 / 詳目顯示

研究生: 黎德君
Li, De-Jun
論文名稱: 扇形文心蘭重複性序列在中期染色體上的分布
The distribution of repetitive sequences on metaphase chromosomes of Erycina pusilla
指導教授: 張松彬
Chang, Song-Bin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 51
中文關鍵詞: 扇形文心蘭螢光原位雜合重複性序列核型
外文關鍵詞: Erycina pusilla, Fluorescence in situ hybridization (FISH), repetitive sequence, karyotype
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭科(Orchidaceae)植物是高度演化並為顯花植物中最大的一科,具有優美多變的花型、花色與香氣,使其於高經濟園藝作物中佔有一席之地,特別是在東亞地區。扇形文心蘭(Erycina pusilla, 2n=10)是附生蘭中的一員,有多個優良的特性如基因組與染色體數目少、生殖世代短,成株個體較為矮小以及全年皆可開花的性質得以作為蘭科植物的模式物種。我們曾以全基因組片段的人工細菌染色體(Bacterial artificial chromosome, BAC)來做基因染色體定位(BAC chromosome mapping),多發現在真染色質上非專一性的重複性訊號。所以,直至目前仍未有足夠的分子標誌得以辨明每一條染色體。本研究從 BAC 018-O-18 中分別找出三段不同的重複性序列(repetitive sequence, EpAG1-EpAG3)皆為扇形文心蘭 MADS 基因群的部分序列。利用螢光原位雜合(Fluorescence in situ hybridization, FISH)技術,發現多座落於所有染色體上的真染色質區域,並依據序列在每條染色體分布的不同,而建立出此蘭科模式生物的核型(karyotype)。將這些序列作為 BAC-FISH 的阻隔 DNA (blocking DNA),雖然能夠隔絕大部分重複性序列的訊號,但仍無法於螢光原位雜合圖譜上獲得專一性信號。另外,
    我們以高度保守之 EpMADS8 M-domain 的部分序列作為探針,會以點狀訊號四散於染色體上。

    Orchidaceae is a highly evolved and largest angiosperm family which has a great diversity in floral morphology, color, size and fragrance being a valuable ornamental crop especially in eastern Asia. The orchid Erycina pusilla (2n=10) is an epiphytic Oncidiinae species and it has several advantageous properties, such as a relatively smaller genome size with low chromosome number, short generation time, small adult plant and blooming all year around, which makes it a potential model species in Orchidaceae family. So far there is no sufficient molecular markers to identify each chromosome. Here we report three repetitive sequences (EpAG1 - EpAG3) which were part of E. pusilla MADS gene family. With Fluorescence in situ hybridization (FISH) technique, we found those repetitive sequences scatter over euchromatic regions of all chromosomes. Based on the different patterns of the distribution of the studied repeats on all chromosome pairs, we constructed a karyotype for the chromosome complements of this potential orchid model. In addition, the pool of those repetitive sequences can be used as blocking DNAs to block repetitive DNA signals mostly but incapable of obtaining specific signals in BAC-FISH mapping. Besides, we used the partial length of highly conserved M-domain sequences of EpMADS8 gene as a probe in FISH. The hybridization signals of dots were scattered in every chromosome and this indicates E. pusilla MADS genes were located at many positions in all chromosomes.

    摘要....................................................I Abstract...............................................II 致謝..................................................III Index..................................................IV List of Tables.........................................VI List of Figures.......................................VII List of Supplements..........................................VIII Abbreviations..........................................IX Chapter 1 Introduction..................................1 1.1 Orchids.............................................1 1.1.1 Orchids...........................................1 1.1.2 Erycina pusilla...................................1 1.2 Cytogenetics studies on plants......................2 1.2.1 karyotyping.......................................2 1.2.2 Application of FISH in plant studies..............2 1.2.3 Cytogenetics studies on E. pusilla................3 1.2.4 FISH with BAC-based probes (BAC-FISH).............3 1.3 Repetitive sequences................................4 1.3.1 The fluorescenct signals of repetitive sequences by FISH....................................................4 1.3.2 The fluorescenct signals of repetitive sequences by FISH....................................................4 1.4 Purpose.............................................5 Chapter 2 Materials and Methods.........................6 2.1 Plant Materials.....................................6 2.2 Preparation of metaphase chromosome slide...........6 2.2.1 Liquid nitrogen method for chromosome prepaeation.6 2.2.2 Drop method for chromosome prepaeation............7 2.3 Preparation of DNA probe for FISH...................7 2.3.1 Extraction of Bacterial artificial chromosome (BAC) DNA.....................................................7 2.3.2 Extraction of plasmid DNA.........................8 2.3.3 Probe labeling with Nick translation kit..........8 2.3.4 Probe labeling with Polymerase chain reaction (PCR) method..................................................9 2.3.5 Quentify probe incorporation by DNA dot blot analysis...............................................10 2.4 Fluorescence in situ hybridization (FISH)..........10 2.5 Microscopy and image capture system................11 2.6 Subcloning of high repetitive sequences in BAC 018-O-18.....................................................12 2.6.1 Preparation of the plasmid vetcor................12 2.6.2 Preparation of highly repetitive sequences in BAC 018-O-18...............................................12 2.6.3 Ligation.........................................13 2.6.4 Transformation of heat-shock method..............13 2.7 Sequences analysis.................................13 Chapter 3 Results......................................14 3.1 Identification and subcloning of highly repetitive DNA sequences in BAC 018-O-18..........................14 3.2 FISH mapping of three repetitive sequences shared the same result that located at the whole range of euchromatic regions in all chromosomes.................14 3.3 The repetitive sequences could be used as blocking DNA....................................................15 3.4 BLASTn results of three repetitive sequences were high similarity with Erycina pusilla MADS genes........16 3. 5 Distribution of EpMADS gene family was globe location of chromosomes................................16 Chapter 4 Discussions..................................18 4.1 Benefits of using repetitive sequences for BAC-FISH in Erycina pusilla.....................................18 4.2 Three repetitive sequences (EpAG1, EpAG2 and EpAG3) showed similar distributed patterns in euchromatin regions................................................18 4.3 EpAG2-repeats, partial sequences of EpAG2 showed hybridization signals at the whole range of euchromatic regions in all chromosomes.............................19 4.4 MADS genes.........................................20 4.5 Conclusion.........................................21 Chapter 5 References...................................22 Chapter 6 Tables.......................................26 Chapter 7 Figures......................................33 Chapter 8 Supplements..................................46

    Begum, R., S.S. Alam, G. Menzel, and T. Schmidt. 2009. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh. Annals of botany. 104:863-872.
    Bennetzen, J.L., J. Ma, and K.M. Devos. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of botany. 95:127-132.
    Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research. 27:573.
    Biscotti, M.A., E. Olmo, and J.P. Heslop-Harrison. 2015. Repetitive DNA in eukaryotic genomes. Chromosome Research. 23:415-420.
    Cai, Z., H. Liu, Q. He, M. Pu, J. Chen, J. Lai, X. Li, and W. Jin. 2014. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC genomics. 15:1.
    Chandler, S.F., and C. Sanchez. 2012. Genetic modification; the development of transgenic ornamental plant varieties. Plant biotechnology journal. 10:891-903.
    Chang, Y.-Y., Y.-F. Chiu, J.-W. Wu, and C.-H. Yang. 2009. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant and cell physiology. 50:1425-1438.
    Chase, M.W., L. Hanson, V.A. Albert, W.M. Whitten, and N.H. Williams. 2005. Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae). Annals of botany. 95:191-199.
    Cheng, Z., C.R. Buell, R.A. Wing, and J. Jiang. 2002. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research. 10:379-387.
    Chiu, Y.-T., C.-S. Lin, and C. Chang. 2011. In vitro fruiting and seed production in Erycina Pusilla (L.) NH Williams and MW Chase. Propag Ornam Plants. 11:131-136.
    Chou, M.L., M.C. Shih, M.T. Chan, S.Y. Liao, C.T. Hsu, Y.T. Haung, J.J. Chen, D.C. Liao, F.H. Wu, and C.S. Lin. 2013. Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. Planta. 237:1425-1441.
    Dressler, R.L. 1993. Phylogeny and classification of the orchid family. Cambridge University Press.
    Felix, L.P., and M. Guerra. 1999. Chromosome analysis in Psygmorchis pusilla (L.) Dodson & Dressier: the smallest chromosome number known in Orchidaceae. Caryologia. 52:165-168.
    Felix, L.P., and M. Guerra. 2010. Variation in chromosome number and the basic number of subfamily Epidendroideae (Orchidaceae). Botanical Journal of the Linnean Society. 163:234-278.
    Fransz, P.F., S. Armstrong, J.H. de Jong, L.D. Parnell, C. van Drunen, C. Dean, P. Zabel, T. Bisseling, and G.H. Jones. 2000. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 100:367-376.
    Gall, J.G., and M.L. Pardue. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences. 63:378-383.
    Gerlach, W., T. Miller, and R. Flavell. 1980. The nucleolus organizers of diploid wheats revealed by in situ hybridization. Theoretical and Applied Genetics. 58:97-100.
    He, Q., Z. Cai, T. Hu, H. Liu, C. Bao, W. Mao, and W. Jin. 2015. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC plant biology. 15:105.
    Hemleben, V., U. Zentgraf, R.A. Torres-Ruiz, and T. Schmidt. 2000. Molecular cell biology: role of repetitive DNA in nuclear architecture and chromosome structure. In Progress in Botany. Springer. 91-117.
    Howell, E., S. Armstrong, G. Barker, G. Jones, G.J. King, C. Ryder, and M. Kearsey. 2005. Physical organization of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 48:1093-1103.
    Jackson, S.A., Z. Cheng, M.L. Wang, H.M. Goodman, and J. Jiang. 2000. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics. 156:833-838.
    John, H., M. Birnstiel, and K. Jones. 1969. RNA-DNA hybrids at the cytological level.
    Kato, A., J.C. Lamb, and J.A. Birchler. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences of the United States of America. 101:13554-13559.
    Kerbauy, G.B. 1984. In vitro flowering of Oncidium varicosum mericlones (Orchidaceae). Plant science letters. 35:73-75.
    Kim, J.-S., K.L. Childs, M.N. Islam-Faridi, M.A. Menz, R.R. Klein, P.E. Klein, H.J. Price, J.E. Mullet, and D.M. Stelly. 2002. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 45:402-412.
    Lee, S.-H., C.-W. Li, C.-H. Liau, P.-Y. Chang, L.-J. Liao, C.-S. Lin, and M.-T. Chan. 2014. Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla. Plant Cell, Tissue and Organ Culture (PCTOC). 120:211-220.
    Lin, C.S., J.J. Chen, Y.T. Huang, C.T. Hsu, H.C. Lu, M.L. Chou, L.C. Chen, C.I. Ou, D.C. Liao, Y.Y. Yeh, S.B. Chang, S.C. Shen, F.H. Wu, M.C. Shih, and M.T. Chan. 2013. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant molecular biology. 82:193-204.
    Lin, C.S., C.T. Hsu, D.C. Liao, W.J. Chang, M.L. Chou, Y.T. Huang, J.J. Chen, S.S. Ko, M.T. Chan, and M.C. Shih. 2016. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant biotechnology journal. 14:284-298.
    Lysak, M.A., P.F. Fransz, H.B. Ali, and I. Schubert. 2001. Chromosome painting in Arabidopsis thaliana. The Plant Journal. 28:689-697.
    Lysak, M.A., M.A. Koch, J.M. Beaulieu, A. Meister, and I.J. Leitch. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution. 26:85-98.
    Matsuba, A., M. Fujii, S.S. Lee, G. Suzuki, M. Yamamoto, and Y. Mukai. 2015. Molecular cytogenetic use of BAC clones in Neofinetia falcata and Rhynchostylis coelestis. The Nucleus. 58:207-210.
    Miller, T., J. Hutchinson, and S. Reader. 1983. The identification of the nucleolus organiser chromosomes of diploid wheat. TAG Theoretical and Applied Genetics. 65:145-147.
    Mukai, Y. 2005. Perspectives in molecular cytogenetics of wheat. Wheat Information Service. 100:17-31.
    Ohmido, N., K. Fukui, and T. Kinoshita. 2010. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proceedings of the Japan Academy, Series B. 86:103-116.
    Pan, I.C., D.C. Liao, F.H. Wu, H. Daniell, N.D. Singh, C. Chang, M.C. Shih, M.T. Chan, and C.S. Lin. 2012. Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding. PloS one. 7:e34738.
    Pan, Z.-J., C.-C. Cheng, W.-C. Tsai, M.-C. Chung, W.-H. Chen, J.-M. Hu, and H.-H. Chen. 2011. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant and Cell Physiology. 52:1515-1531.
    Pan, Z.J., Y.Y. Chen, J.S. Du, Y.Y. Chen, M.C. Chung, W.C. Tsai, C.N. Wang, and H.H. Chen. 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA‐like genes. New Phytologist. 202:1024-1042.
    Russell, A., R. Samuel, V. Klejna, M.H. Barfuss, B. Rupp, and M.W. Chase. 2010. Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. Annals of botany. 106:37-56.
    Santos, F.C., R. Guyot, C.B. do Valle, L. Chiari, V.H. Techio, P. Heslop-Harrison, and A.L. Vanzela. 2015. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 23:571-582.
    Schwarzacher, T., and P. Heslop-Harrison. 2000. Practical in situ Hybridization. BIOS Scientific Publishers Ltd.
    Siroky, J. 2008. Chromosome landmarks as tools to study the genome of Arabidopsis thaliana. Cytogenetic and genome research. 120:202-209.
    Stack, S., S. Royer, L. Shearer, S. Chang, J. Giovannoni, D. Westfall, R. White, and L. Anderson. 2009. Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenetic and genome research. 124:339-350.
    Suzuki, G., Y. Ogaki, N. Hokimoto, L. Xiao, A. Kikuchi-Taura, C. Harada, R. Okayama, A. Tsuru, M. Onishi, N. Saito, G.S. Do, S.H. Lee, T. Ito, A. Kanno, M. Yamamoto, and Y. Mukai. 2012. Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant cell reports. 31:621-628.
    Theissen, G., and H. Saedler. 2001. Plant biology: floral quartets. Nature. 409:469-471.
    Yeh, H.-Y., C.-S. Lin, and S.-B. Chang. 2015. Cytogenetic and cytometric analyses in artificial intercytotypic hybrids of the emergent orchid model species Erycina pusilla. Euphytica. 206:533-539.
    Zhang, P., W. Li, J. Fellers, B. Friebe, and B.S. Gill. 2004. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 112:288-299.
    Zhong, X.-B., J.H. de Jong, and P. Zabel. 1996. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Research. 4:24-28.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE