簡易檢索 / 詳目顯示

研究生: 蘇惟恩
Su, Wei-En
論文名稱: 拉蓋爾-高斯光束對電子束調制之模擬研究
Simulation Study of Electron Beam Modulated by Laguerre-Gaussian Beams
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 拉蓋爾-高斯光束電子迴旋時域有限差分法粒子網格法迴旋共振
外文關鍵詞: Laguerre-Gaussian beams, Electron cyclotron motion, Finite-Difference Time-Domain method, Particle-In-Cell, Cyclotron resonance
相關次數: 點閱:34下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拉蓋爾-高斯光束因獨有的相位特性和角動量屬性,利用光場來調控電子運動提供了一種新的可能。拉蓋爾-高斯光束的特殊相位和螺旋狀電場分佈可以精確地控制電子的運動,從而實現更高效和更精確的電子束調節。拉蓋爾-高斯光束具有自旋角動量和軌道角動量兩種形式的角動量。當拉蓋爾-高斯光束作用於電子時,光束的角動量可以轉移給電子,從而改變電子的運動狀態,形成所謂的渦旋電子束。
    本研究使用模擬軟體Vsim進行模擬,藉由有限時域差分法與粒子網格法,在離散化的時空中進行電磁場模擬計算,再利用Matlab軟體進行數據整理計算與繪圖,對電場強度分佈圖、電子束分佈圖、粒子軌跡圖進行分析。
    本研究首先對Vsim進行了拉蓋爾-高斯光束模擬的理論驗證,進行電場強度分佈的理論計算,確定使用Vsim研究模擬的可行性。接著針對不同自旋角動量與軌道角動量的拉蓋爾-高斯光束,分析其的傳播方向電場強度分佈、橫向電場強度分佈、橫向總電場向量分佈以及電子束分佈,接著討論了在相同自旋角動量與軌道角動量的拉蓋爾-高斯光束中,改變電場頻率與電場強度對電子迴旋運動的影響。最後,比較電子在拉蓋爾-高斯光束中進行迴旋運動以及電子在外加磁場中進行迴旋共振的差別。

    The Laguerre-Gaussian beam, with its unique phase characteristics and angular momentum properties, offers a novel approach to manipulating electron motion using optical fields. The distinctive phase and helical electric field distribution of the Laguerre-Gaussian beam can precisely control electron motion, thereby achieving more efficient and accurate electron beam modulation. The Laguerre-Gaussian beam possesses two forms of angular momentum: spin angular momentum and orbital angular momentum. When the Laguerre-Gaussian beam interacts with electrons, the beam's angular momentum can be transferred to the electrons, altering their motion and forming what is known as an electron vortex beam.

    This study first conducted a theoretical validation of the Laguerre-Gaussian beam simulation using Vsim, performing theoretical calculations of the electric field intensity distribution to confirm the feasibility of using Vsim for this research. Subsequently, the study analyzed the propagation direction electric field intensity distribution, transverse electric field intensity distribution, transverse total electric field vector distribution, and electron beam distribution for Laguerre-Gaussian beams with different spin angular momentum and orbital angular momentum. It then explored the effects of changing the electric field frequency and electric field intensity on electron cyclotron motion in Laguerre-Gaussian beams with the same spin angular momentum and orbital angular momentum. Finally, it compared the differences between electron cyclotron motion in Laguerre-Gaussian beams and electron cyclotron resonance in an applied magnetic field.

    合格證明 I 中文摘要 II 英文摘要 III 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構 4 第二章 拉蓋爾-高斯光束 5 2.1 馬克士威方程組(MAXWELL’S EQUATIONS) 5 2.2 高斯光束 8 2.3 光學渦旋光束和生成方式 13 2.4 拉蓋爾-高斯光束 22 第三章 模擬方法 26 3.1 時域有限差分法(FINITE-DIFFERENCE TIME-DOMAIN) 26 3.2 粒子網格法(PARTICLE-IN-CELL) 34 3.3 模擬軟體-VSIM 41 第四章 拉蓋爾-高斯光束之電子調製模擬 43 4.1 模擬可行性驗證 43 4.2 拓樸電荷數與偏振態對電子束之影響 47 4.3 電場頻率與電場強度對電子束之影響 60 4.4 迴旋共振 64 第五章 結論 68 參考資料 69

    [1] Miles Padgett, Johannes Courtial, Les Allen; Light’s Orbital Angular Momentum. Physics Today. 57, 5, pp. 35–40, 2004.
    [2] Shen, Y., Wang, X., Xie, Z. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl, 8, 90, 2019.
    [3] Martin Kozák. Electron Vortex Beam Generation via Chiral Light-Induced Inelastic Ponderomotive Scattering. ACS Photonics. 8, 2, pp. 431-435, 2021.
    [4] Vanacore, G.M., Berruto, G., Madan, I. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, pp. 573–579, 2019.
    [5] McMorran Benjamin J., Agrawal Amit, Ercius Peter A., Grillo Vincenzo, Herzing Andrew A., Harvey Tyler R., Linck Martin and Pierce Jordan S. 2017 Origins and demonstrations of electrons with orbital angular momentum. Phil. Trans. R. Soc. A. 375, 2015
    [6] Benjamin J. McMorran et al. ,Electron Vortex Beams with High Quanta of Orbital Angular Momentum. Science, 331, pp. 192-195, 2011.
    [7] Song, H., Pae, K.H., Won, J. et al. Characteristics of electron beams accelerated by parallel and antiparallel circularly polarized Laguerre–Gaussian laser pulses. Appl. Phys. B. 129, 56, 2023.
    [8] Shi Y, Blackman DR, Zhu P, Arefiev A. Electron pulse train accelerated by a linearly polarized Laguerre–Gaussian laser beam. High Power Laser Science and Engineering, 2022
    [9] Harris, J., Grillo, V., Mafakheri, E. et al. Structured quantum waves. Nature Phys 11, pp. 629–634, 2015.
    [10] Griffiths, David J. Introduction to Electrodynamics. 4th ed. Cambridge: Cambridge University Press, pp. 314-342, 2017.
    [11] 李永勳, 電磁學(第二版), 偉明出版社, pp. 358, 1996.
    [12] Saleh, Bahaa EA, and Malvin Carl Teich. Fundamentals of photonics. john Wiley & sons, 2019.
    [13] Jennifer E. Curtis and David G. Grier. Structure of Optical Vortices. Phys. Rev. Lett. 90, pp. 133901, 2003.
    [14] Desyatnikov, Anton S., Kivshar, Yuri S., and Torner, Lluis, "Chapter 5 - Optical vortices and vortex solitons," Progress in Optics, 47, pp. 293-297, 2005.
    [15] Miles Padgett, Johannes Courtial, and Les Allen, "Light’s Orbital Angular Momentum," Physics Today, 57, 5, pp. 35–40, 2004.
    [16] Padgett, M.J., Allen, L. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 31, 1–12, 1999.
    [17] Jian Ren, Kwok Wa Leung; Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna. Appl. Phys. Lett. 26, 112, 13, pp. 131103, 2018
    [18] Xu, Jianchun, et al. "Microwave orbital angular momentum beam generation based on circularly polarized metasurface antenna array." Engineered Science, 6, 2, 30-35, 2019.
    [19] Sawant, A., Choe, M.S., Thumm, M. et al. Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers. Sci Rep, 7, pp. 3372, 2017.
    [20] Lan, YC., Shen, CH. & Chen, CM. Electron cyclotron motion excited surface plasmon and radiation with orbital angular momentum on a semiconductor thin film. Sci Rep, 10, pp. 16768, 2020.
    [21] Pei Miao et al. ,Orbital angular momentum microlaser. Science. 353, pp. 464-467, 2016.
    [22] Robert C. Devlin et al. ,Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, pp. 896-901, 2017.
    [23] Alison M. Yao and Miles J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. 3, pp. 161-204, 2011.
    [24] Saleh, Bahaa EA, and Malvin Carl Teich. Fundamentals of photonics. john Wiley & sons, 2019.
    [25] Jin, Hanbing. Particle-in-Cell Simulation of Electromagnetic Pulse Generated by High-power Laser-target Interaction. 2018.
    [26] Kane Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," in IEEE Transactions on Antennas and Propagation, 14, 3, pp. 302-307, 1966.
    [27] Schneider, John B. "Understanding the finite-difference time-domain method." School of electrical engineering and computer science Washington State University. 28,2010.
    [28] Vay, J. L. "Simulation of plasma accelerators with the Particle-In-Cell method." arXiv preprint arXiv:2008.07300, 2020.
    [29] 藍永強, 邱行偉. 電漿模擬. 物理雙月刊, 廿八卷, 二期, pp. 497、2006.
    [30] Vay, J. L. "Simulation of plasma accelerators with the Particle-In-Cell method." arXiv preprint arXiv:2008.07300, 2020.
    [31] Boris, Jay P. "Relativistic plasma simulation-optimization of a hybrid code." Proc. Fourth Conf. Num. Sim. Plasmas. 1970.
    [32] Vay, J-L. "Simulation of beams or plasmas crossing at relativistic velocity." Physics of Plasmas, 15, 5, 2008.
    [33] Higuera, Adam V., and John R. Cary. "Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields." Physics of Plasmas, 24, 5, 2017.
    [34] 丁攀峰, and 蒲继雄. "拉盖尔高斯涡旋光束的传输." 物理学报, 60, 9, pp.338-342, 2011.
    [35] Benjamin Lax, John G. Mavroides, Frederick Seitz, David Turnbull, Cyclotron Resonance, Solid State Physics, 11, pp. 261-400, 1960.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE