簡易檢索 / 詳目顯示

研究生: 紀淵程
Chi, Yuan-Cheng
論文名稱: 雙層鉍與碲化鉍異質界面之製備以及物理特性之研究
The study of physical properties and fabrication of heterointerface between Bismuth bilayer and Bismuth Telluride
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 52
中文關鍵詞: 拓樸絕緣體碲化鉍雙層鉍蝕刻製程能帶分裂效應掃描穿隧顯微儀角分辨光電子能譜X光光電子能譜異質接面
外文關鍵詞: Etching fabrication, Bismuth telluride (Bi2Te3), Bismuth Bilayer (Bi-BL), Rashba effect, herto-interface
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們利用新穎的方式氫原子蝕刻三維拓樸絕緣體碲化鉍塊材來製備雙層鉍。
      從STM可觀察表面結構的變化,發現低曝氫量的蝕刻時,主要是對於台階邊緣和最外層的碲原子進行蝕刻。當增加曝氫量蝕刻後,可發現表面形成新的大面積平台,並可在觀察到雙層鉍的原子排列結構。而殘餘的氫原子也會與碲原子鍵結形成突起物存在於台階的邊緣上。
      在電子特性上,拓樸絕緣體表面態轉變成金屬態,能帶結構則具有Rashba分裂的特性。在樣品表面成分組成上,發現隨著曝氫量蝕刻增加,表面Te含量減少,而使Bi金屬鍵結增加。
      因此證實利用top-down的方式,可以製備出雙層鉍在碲化鉍的異質結構。

    The study of physical properties and fabrication of heterointerface between Bismuth bilayer and Bismuth Telluride
    Author’s Name:Yuan-Cheng Chi
    Advisor’s Name:Rong-Jyun Huang
    Department of Physics, National Cheng Kung University

    SUMMARY
     In this research, two-dimensional (2D) bismuth bilayer (BL) structure are prepared on Bi2Te3 bulk by atomic hydrogen etching. After at least 12000L of hydrogen dosing, the new large-area terrace appeared at surface, and atomic arrangement structure of bismuth bilayer is observed. The transformation of surface morphology is observed using scanning tunneling microscopy (STM). On the electronic properties, the electronic feature of Bi2Te3 surface turn surface state of topological insulator into metallic-like state after hydrogen etching using scanning tunneling spectroscopy (STS). The Rashba-splitting property near the Fermi level is clearly observed by angle-resolved photoemission spectroscopy (ARPES). The reduction of Te amount and enhancement of Bi metal bonding on the surface composition after increasing the amount of hydrogen dosing are confirmed by X-ray photoelectron spectroscopy (XPS). Our results present the top-down approach to prepare the hetero-interface between bismuth bilayer and bismuth telluride.

    Key words: Etching fabrication ; Bismuth telluride (Bi2Te3);Bismuth Bilayer (Bi-BL); Rashba effect; herto-interface

    INTRODUCTION
     Topological insulators (TI), realized in materials with strong spin-orbital interaction, are gaining increasing attention in condensed matter physics. 3D TI has been well established experimentally by measuring the helical-like surface states (SS) bands dispersion for various Bi-based materials, like Bi2Te3, Bi2Se3, with angle-resolved photoemission spectroscopy (ARPES).
    For 2D quantum spin Hall states (2D QSH), there has been only one case: HgTe/CdTe quantum wells, be performed in 2007. Another interesting system predicted to be in a 2D QSH phase is a single bilayer Bi(111) ultrathin film (Bi-BL). However, it is difficult to grow ultrathin Bi film without a suitable substrate, so the effect of the substrate is definitely important.
    In the present paper, we find that Bi2Te3 (111) are appropriate substrate for Bi(111) growth on account of their small lattice mismatch. A simple top-down approach to prepare Bi-BL on Bi2Se3 were proposed by Roozbeh Shokri’s group. They suggested that terminated Se atoms can be remove by hydrogen gas, via the chemical reaction 2H + Se → H2Se, and producing a Bi enriched surface.
    Based on lattice matching and the feasibility of top-down approach, we fabricated 2D bismuth bilayer (BL) on Bi2Te3 bulk by atomic hydrogen etching. We tried out the way and further studied its structural properties, etching mechanism by STM and electronic properties by ARPES and XPS.

    MATERIALS AND METHODS
    The Bi2Te3 bulk we used in our research come from Prof. Ming-Ci Chou (Dep. Of Materials and Optoelectronic Science, National Sun Yat-sen University). The STM and STS research were performed at MBE Lab.-STM group , National Cheng Kung University; all Work at ultra-high vacuum , about 3×10-8 pa. And the Bi2Te3 etching fabrication need to heat up Bi2Te3 to 80-120oC, We exposure the hydrogen gas at 1.0 ×10-4 pa (~ 7.5 ×10-7 torr), in different conditions, by unit of Langmuir (1L= 1.0 ×10-6 torr.sec). In different exposure conditions, research the morphology and electronic properties, make a comparison to the result. The ARPES and XPS experiments were performed at BL 21B and 24A, respectively, in NSRRC (Hsinchu, Taiwan), all the analysis also under the UHV condition.

    RESULTS AND DISCUSSION
     In this research, two-dimensional (2D) bismuth bilayer (BL) structure are prepared on Bi2Te3 bulk by atomic hydrogen etching. And the Bi-BL/ Bi2Te3 hetro-interface structure finally formed after at least 12000L hydrogen atoms etching.
    The transformation of surface morphology is observed using scanning tunneling microscopy (STM). At low dosing condition, the step edge and the outermost layer of tellurium are initially etched. After increasing the amount of hydrogen dosing, the new large-area terrace appeared at surface, and atomic arrangement structure of bismuth bilayer is observed. Furthermore, the residual hydrogen atoms are bonded to the tellurium atoms to form protrusions on the step edges. We use STM and XPS to confirm that the content of Te will decrease after annealing, but the quantity will decay into a constant. It shows Bi2Te3 surface binding will much more easier to break after annealing, and it provide an easier condition for hydrogen atoms etching.
    On the electronic properties, the electronic feature of Bi2Te3 surface turn surface state of topological insulator into metallic-like state after hydrogen etching using scanning tunneling spectroscopy (STS). We used ARPES to research band structure of Bi2Te3 after 12000L etching condition, the band structure most same as the structure of epitaxy Bi-BL on Bi2Te3 in reference. The Rashba-splitting property near the Fermi level is clearly observed in our result, we guess that the protrusions may change the electronic structure of origin band structure of epitaxial Bi-BL/ Bi2Te3.
    The reduction of Te amount and enhancement of Bi metal bonding on the surface composition after increasing the amount of hydrogen dosing are confirmed by X-ray photoelectron spectroscopy (XPS).

    CONCLUSION
      Our results present the top-down approach to prepare the hetero-interface between bismuth bilayer and bismuth telluride. The transformation of surface morphology is observed using scanning tunneling microscopy (STM) , to clarify the surface morphology changes under different circumstances. The electronic band structure was carried out more detail than the epitaxial Bi-BL/ Bi2Te3, we observed Rashba-splitting property near the Fermi level. XPS analysis carried out the main surface element lead by metallic type bonds after 12000L etching condition. According to the above experimental results, Bi-BL/ Bi2Te3 hetro-interface structure can easily prepared by this mechanism.

    【目錄】 摘要 I Extended Abstract II 誌謝 V 目錄 VI 圖目錄 VIII Chapter 1 Introduction 1 1.1 拓樸絕緣體的發展 1 1.2 拓樸絕緣體的特性 3 1.3 三維拓樸絕緣體碲化鉍Bi2Te3 5 1.4 二維拓樸絕緣體的相關回顧以及簡介 7 1.4.1 雙層鉍(Bi bilayer) 8 1.5 實驗動機 15 1.6 參考文獻 16 Chapter 2 Theoretical Aspects of Instrumentation 18 2.1 掃描穿隧顯微術(Scanning Tunneling Microscopy, STM) 18 2.1.1 穿隧原理 18 2.2 掃描穿隧能譜術(STS) 21 2.2.1 I(V)能譜[2] 21 2.2.2 Lock-in技術 22 2.3 同步輻射光源(Synchrotron light source)[3] 23 2.3.1 X射線光電子能譜(XPS)[4] 25 2.3.2 角分辨光電子能譜(ARPES)[5] 26 2.4 參考文獻 28 Chapter 3 Experimental Equipment 29 3.1 JEOL SPM 系統 29 3.1.1 氫氣裂解槍(Hydrogen Cracker) 32 3.1.2 STM探針的製備 33 3.1.3 STM的基本掃描 34 3.2 同步輻射研究中心 NSRRC 35 3.3實驗流程 35 3.4參考文獻 36 Chapter4 Experiment 37 4.1碲化鉍晶體的物理特性探討 37 4.1.1 碲化鉍表面形貌 37 4.1.2碲化鉍的電子特性探討 38 4.2 利用氫原子蝕刻碲化鉍之特性探討 39 4.2.1 碲化鉍經加熱的特性探討 39 4.2.2 碲化鉍經不同氫原子曝量的蝕刻後的表面形貌 41 4.2.3 碲化鉍經氫原子蝕刻後表面成分的組成變化 45 4.2.4  碲化鉍經氫原子蝕刻後電子特性的變化 46 4.3 雙層鉍/碲化鉍結構的ARXPS探討 49 4.4 參考文獻 51 Chapter 5 Conclusion 52 【圖目錄】 圖1.1 (a) Sb2Se3 (b) Sb2Te3 (c) Bi2Se3 (d) Bi2Te3的能帶理論計算[10] 2 圖1.2  不同的電子能態及其對應圖(a) 絕緣體 (b)量子霍爾效應 (c)量子自旋霍爾效應 [17] 3 圖1.3  (a)有一束光打在具有抗反射塗層的透鏡上,由頂部(藍線)和底部(紅線)反射的兩道光線顯示破壞性干涉的原理。(b)在量子自旋霍爾效應的邊緣態,由於時間反演對稱性,載子經由兩種不同路徑,也造成了破壞性干涉的抵銷。[18] 4 圖1.4 三維拓樸絕緣體Bi2Se3的在動量空間的狄拉克錐示意圖[18] 5 圖1.5 三維拓樸絕緣體Bi2Te3在Γ-K及Γ-M方向的ARPES能譜構造(E0=0.34eV,為Dirac point 的束縛能;E1= 0.045eV,為塊材導帶(Bulk conduction band, BCB)的束縛能;E2=0.165eV,為塊材的能隙;E3=0.13eV,為塊材價帶(Bulk valence band, BVB)以及Dirac point 的能量差異[19] 6 圖1.6  Bi2Te3的晶體結構。(a)其原始晶格向量為t1,t2及t3。紅色方框內的Te1–Bi1–Te2–Bi1–Te1 五層原子構造為1個Quintiple Layer 結構。(b)從z軸俯視的示意圖。(c) Quintiple Layer 結構的側面示意圖。[20] 6 圖1.7 量子自旋霍爾邊緣態的出現和碲化汞的厚度十分相關,實驗顯示當厚度大於6.5nm時,碲化汞量子井會導致其是一種拓樸絕緣體[17] 7 圖1.8 雙層鉍(111)結構的 (a)俯視圖以及(b)側面圖[23] 8 圖1.9 雙層鉍(110)結構的(a)俯視圖,(b)、(c)側面圖,其差異為垂直或是平行於粉紅色字所標註的鏡面平面方向所觀看[25] 9 圖1.10  Γ-K方向的ARPES能譜,能量hv= 21 eV對於 (a) 18 QL Bi2Te3以及其動量曲線(b),然後是(c) single Bi-BL/ Bi2Te3結構以及其動量曲線(d)[32] 10 圖1.11 利用STM分辨Bi2Te3表面的高度差異(a) 大面積Bi2Te3的STM圖 (b) 高度差異圖 (c) Bi2Te3的高原子解析度,可清楚看到其蜂巢狀結構。[33] 11 圖1.12 不同構造經由DFT所計算的電子能帶(a) 塊材碲化鉍 (b)單層鉍/碲化鉍,以及(c)雙層鉍/碲化鉍結構。綠色及紅色圓盤表示碲化鉍中QL的構造堆疊,橘色則是單層鉍結構,費米能階則皆設定在E=0的位置。[33] 11 圖1.13 分析比例R=ISe/IBi,在不同曝氫量的變化。[34] 12 圖1.14  SXRD分別在(a)曝氫量較高,以及(b)曝氫量較低的實驗結果轉化為結構的原理圖。藍色和紅色的球體分別表示鉍原子及硒原子。配合理論計算的結果,在(b)圖也顯示雙層鉍形成的結構,如括號所示。[34] 13 圖1.15  STM觀測在不同水氣量蝕刻碲化鉍的表面形貌:(a)200L (b)2200L (c)5500L (d)7500L (e)12000L (f)示意(b)圖中綠色方框的高度差異[36] 14 圖2.1 電子穿隧的示意圖,STM的探針尖端只有少數個原子。如此一來,在進行掃描的過程中,只有尖端的幾個原子進行穿隧過程的貢獻。[1] 19 圖2.2 探針-真空-樣品接面系統的位能示意圖,z軸表示真實空間中,探針和樣品的垂直距離 (a)探針以及樣品呈電性平衡的狀態 (b)正偏壓 (c)負偏壓[2] 19 圖2.3鎖向放大器(Lock-in amplifier)作用的示意圖[2] 23 圖2.4 電磁波譜的示意圖以及同步輻射光源的主要波段[3] 24 圖2.5 同步輻射光源可測量的現象示意圖 24 圖2.6 XPS的實驗原理基本示意圖 26 圖2.6 ARPES的實驗原理基本示意圖,其基本原理和XPS相去不遠,皆是建立於光電效應 26 圖3.1 JSPM-4500A裝置之儀器設備簡易圖 29 圖3.2 腔體之間皆有閥門隔開,確保腔體間的真空度不互相影響 30 圖3.3 JSPM-4500A之裝置後方儀器設備簡易圖 31 圖3.4 實驗室自製的氫氣裂解槍示意圖 32 圖3.5 利用電化學方法蝕刻鎢絲[3] 33 圖3.6 將製備好的鎢探針放置於探針座上,並設定好其高度 33 圖3.7 STM所掃描的Si(111)7×7重構[2] 34 圖3.8 (左)國家同步輻射中心光束線21B,主要量測ARPES;(右) 光束線24A,主要量測XPS 35 圖4.0 實驗使用之碲化鉍晶體 37 圖4.1 (a) 碲化鉍晶體的STM圖像(150nm × 150nm);(b)為(a)圖中藍色實線的高度解析圖,可發現台階的落差約為1nm;(c)原子解析度(5nm × 5nm),可清楚看到碲化鉍的六角對稱結構(其掃描條件為偏壓Bias V=0.003V,穿隧電流為0.08nA) 38 圖4.2 (a) ARPES量測之碲化鉍晶體能帶結構;(b)STS所量測之局部能態分布密度LDOS 39 圖4.3 左為尚未蝕刻的碲化鉍經加熱後的表面形貌,面積為250nm × 250nm;右圖為左圖中藍色實線的高度探測圖 40 圖4.4 對於不同時間加熱碲化鉍表面的碲原子之XPS量測圖 40 圖4.5 STM觀察碲化鉍在曝氫2000L的情形下之形貌 (a)150nm × 150nm;(b)103nm × 103nm;(c) 碲化鉍在少量曝氫下結構被蝕刻的示意圖;(d)在(b)圖中的藍色實線高度示意圖,顯示突起物的高度 41 圖4.6 STM觀察碲化鉍在曝氫4000L及6000L的情形下之形貌 (a)4000L (500nm×500nm);(b)6000L (350nm×350nm);(c)平台被蝕刻的示意圖 43 圖4.7 STM觀察碲化鉍在曝氫9000L及12000L的情形下之形貌 (a) 9000L (350nm × 350nm), (b)12000L(150nm × 150nm);(c)9000L(4nm × 4nm),(d)12000L(5nm × 5nm) 43 圖4.8 STM觀察碲化鉍在曝氫15000L的情形下之形貌 (a) 300nm × 300nm,(b) 5nm × 5nm,(c) 15nm × 15nm,(d)圖(c)中藍色實線的高度分析 (e) 碲化鉍在多量曝氫下結構被蝕刻完畢為雙層鉍結構的示意圖 44 圖4.9 XPS顯示碲化鉍經過不同氫原子蝕刻量後的表面鍵結組成變化 45 圖4.10 XPS顯示碲原子經不同氫氣蝕刻量後的數量變化 46 圖4.11 無蝕刻以及經過氫氣蝕刻,不同曝氣量下的碲化鉍STS能譜比較 47 圖4.12 12000L氫氣蝕刻量下的雙層鉍/碲化鉍結構的ARPES能譜 (a) K-Γ-K以及M-Γ-M方向的能帶以及其局部放大圖,放大範圍為紅色方框的能量區域;(b) C.L. Gao團隊使用磊晶方式成長雙層鉍於碲化鉍上的ARPES能譜圖;(c)在Fermi level附近,利用對光電子能量強度做兩次微分後之能譜圖;(d)經氫蝕刻的雙層鉍/碲化鉍結構, Dirac point的位置發現垂直非色散特徵。 48 圖4.13 ARXPS的示意圖 49 圖4.14 ARXPS對於超過15000L蝕刻後的碲化鉍單一元素含量分析(a) Bi 5d (b) Te 4d鍵結 50 圖4.15 對於不同角度下Bi 5d的軌域鍵結中Bi-Te的鍵結強度擬合,入射角度:(a)28度、(b)36度、(c)44度、(d)52度、(e)60度、(f)72度,(g) 不同角度入射下,Bi-Te鍵結強度的面積總和 51

    1.6
    [1] X.L.Qi and S.C.Zhang, phys.today, 63,33 (2010)
    [2] Shuichi Murakami, et al., Science, 301,1348 (2003)
    [3] Jairo Sinova, et al., Phys.Rev.Lett., 92,126603 (2004)
    [4] C.L.Kane, E.J.Mele, Phys.Rev.Lett., 95,226801 (2005)
    [5] B.A.Bernevig, et al., Science, 314, 1757 (2006)
    [6] Markus König, et al., Science, 318, 5851 (2007)
    [7] C.L.Kane, E.J.Mele, Phys.Rev.Lett., 95,146802 (2005)
    [8] L.Fu and C.L.Kane, Phys.Rev.B, 76, 045302 (2007)
    [9] D.Hsieh, et al., Nature, 452, 970 (2008)
    [10] H.Zhang, et al., Nature phys., 5, 438 (2009)
    [11] Y. Xia, et al., Nature phys., 5, 398 (2009)
    [12] D. Hsieh, et al., Phys.Rev.Lett., 103, 146401 (2009)
    [13] Shuichi Murakami, Phys. Rev. Lett. , 97, 236805 (2006)
    [14] Z.Liu, et al., Phys.Rev.Lett., 107, 136805 (2011)
    [15] D.Wang, et al., J. Phys. Soc. Jpn., 82, 094712 (2013)
    [16] M.Wada, et al., Phys.Rev.B, 83, 121310 (2011)
    [17] Charles Day,  Physics Today, 61(1), 19 (2008)
    [18] X.L. Qi and S.C. Zhang, Physics Today, 63(1), 33 (2010)
    [19] Y.L. Chen, et al., cond-mat.mtrl-sci, 0904,1829 (2009)
    [20] Z.G. Chen, et al., Natural Science, 22(6), 535-549 (2012)
    [21] J. Zhang, et al., Journal of Applied Physics, 116, 023706 (2014)
    [22] H. Julian Goldsmid, Materials, 7, 2577-2592 (2014)
    [23] H. Mönig, et al., Phys. Rev. B , 72, 085410 (2005)
    [24] I.K. Drozdov and A. Alexandradinata, Nature Physics (2014)
    [25] J. Sun, et al., Phys. Rev. B , 74, 245406 (2006)
    [26] Y. M. Koroteev and G.Bihlmayer, Phys. Rev. B , 77, 045428 (2008)
    [27] K.H. Zhang, et al., J Phys Condens Matter, 24 (43), 435502 (2012)
    [28] M.X. Wang, C. Liu, Science, 336, 52-55 (2012)
    [29] L. Miao, et al., Proc. Natl. Acad. Sci., 110, 2758-2762 (2013)
    [30] M.Chen, et al. , Appl. Phys. Lett. , 101, 081603 (2012)
    [31] T. Hirahara, et al., Phys. Rev. Lett., 97, 146803 (2006)
    [32] Toru Hirahara, et al., Phys. Rev. Lett. , 107, 166801 (2011)
    [33] P.M. Coelho, et al., Nano Lett., 13 (9), 4517–4521 (2013)
    [34] Roozbeh Shokri, et al., Phys. Rev. B., 91, 205430 (2015)
    [35] Lada V. Yashina, et al., ACS Nano, 7 (6), 5181–5191 (2013)
    [36] K.W. Zhang, et al. and D. Ding, Phys. Rev. B., 93, 235445 (2016)

    2.4
    [1] M.Ternes, “Scanning Tunneling Spectroscopy at the single atom scale.” PhD thesis, Ecole Polytechnique Federale de Lausanne (2006)
    [2] Ada Della Pia and G. Costantini., ”Surface Science Technique” chapter 19: “Scanning Tunneling Microscopy” (2013)
    [3] 國家同步輻射研究中心-NSRRC官方網站: https://www.nsrrc.org.tw/chinese/lightsource.aspx
    [4] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D.Bomben, “Handbook of X-ray Photoelectron Spectroscopy” (1992)
    [5] Ari Deibert Palczewski, “Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors” Ph. D. Thesis (2010)
    [6] John Singleton, “Band Theory and Electronic Properties of Solids”, Oxford University Press. (2005)

    3.4
    [1] S.H. Su, “The structural and chemical properties of Co growth on ZnO(10-10) surface.” Ph.D thesis, Dep. Of Physics, National Cheng Kung University (2013)
    [2] H.H. Chen, “The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene.” Ph.D thesis, Dep. Of Physics, National Cheng Kung University (2015)
    [3] Ada Della Pia and G. Costantini., ”Surface Science Technique” chapter 19: “Scanning Tunneling Microscopy” (2013)

    4.4
    [1] Toru Hirahara, et al., Phys. Rev. Lett. , 107, 166801 (2011)
    [2] P.M. Coelho, et al., Nano Lett., 13 (9), 4517–4521 (2013)
    [3] Y.L. Chen, et al., cond-mat.mtrl-sci, 0904,1829 (2009)
    [4] C.L. Gao, et al., Chinese Phys. B, 22, 067304 (2013)
    [5] Roozbeh Shokri, et al., Phys. Rev. B., 91, 205430 (2015)
    [6] S.W. Chen, “The study of physical properties and fabrication of two-dimension TI Bismuth bilayer and Stanene.”, Master Thesis , Dep. Of Physics, NCKU (2015)
    [7] K.W. Zhang, et al. and D. Ding, Phys. Rev. B., 93, 235445 (2016)
    [8] Zhanybek Alpichshev, et al.,  Phys. Rev. B., 104, 016401 (2010)
    [9] M. Chen, et al., Appl. Phys. Lett., 101, 081603 (2012)
    [10] Z. Liu, et al., Phys. Rev. Lett. , 107,136805 (2011)

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE