簡易檢索 / 詳目顯示

研究生: 黃昱傑
Huang, Yu-Jie
論文名稱: 以光學系統量測磁化電漿實驗室裝置MPX運作空間之研究
Investigation of operating space of magnetized plasma experiment device MPX by using spectroscopic measurement
指導教授: 河森榮一郎
Eiichirou Kawamori
學位類別: 碩士
Master
系所名稱: 理學院 - 太空天文與電漿科學研究所
Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 電漿發射源碰撞與輻射模型光學量測
外文關鍵詞: Plasma emitter, spectroscopic measurement, collisional and radiative model, magnetized plasma
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為瞭解建置於成功大學電漿與太空科學中心的磁化電漿實驗裝置的運作空間並藉由發展新的鋰離子電漿發射源以拓展電漿實驗裝置的運作空間到低密度、溫度的電漿領域。在發展鋰離子電漿產生器之前,電漿實驗室已發展的電漿產生方式有高溫陰極法、磁電管微波產生器和低功率的射頻電漿源。此電漿發射器是利用鋰霞石與六硼化鑭的混合物當作離子與電子源來產生低密度、溫度及非碰撞的電漿並用蘭摩爾探針系統來確定。其產生電漿的電子密度與溫度範圍分別是1012 ~1013 m-3 and 0.1 ~0.3 電子伏特.
    為了要估計利用磁化電漿實驗裝置裡的熱陰極與電子共振法產生之電漿的電漿參數,我們發展可見光波段的光學量測系統。為了要重建光譜,我們利用微波干涉法碰撞與輻射模型計算電子在各能階的佔有密度來建構計算光譜。我們藉由光學量測之光譜和計算光譜做比較來得到磁化電漿實驗室的運作參數空間。目前在磁鏡比從1.3到2.8所得到的電子密度與溫度範圍分別為1012 到1017 m-3 及0.1到 16 電子伏特。值得一提的是,在電子共振法產生之電漿包含熱電子,其熱電子密度及溫度為1012 到1013 m-3 及75到 100電子伏特。從微波干設法得知,電子共振法產生之電漿的最大電子密度與溫度可能是電漿的不穩定所造成的。

    The purposes of this research are to investigate operating parameter space of magnetized plasma experiment (MPX) device at PSSC/NCKU and expand the operation space toward low density and temperature region by developing a new lithium plasma emitter. The MPX device has been equipped with three plasma sources, a hot-cathode discharge type plasma source, a magnetron electron cyclotron resonance (ECR) plasma generator and a low power rf discharge source before installing the lithium contact ionization plasma emitter. The developed plasma emitter in present research which employs a mixture of lithium type beta-eucryptite and LaB6 as ion and electron source has a capability of producing low temperature collisionless plasma. Langmuir probe measurement identified that the electron density and temperature were 1012 ~1013 m-3 and 0.1 ~0.3eV, respectively.
    In order to evaluate plasma parameters of the MPX plasma of the hot-cathode and the ECR modes, we developed a visible light spectroscopy system. By combining the results of spectroscopic measurement with the calculation of the population model called collisional and radiative model and the interferometer measurement, we estimated the operating parameter space. In the present operation under the condition of the magnetic mirror ratio from 1.3 to 2.8, the electron density and temperature range from1012 to 1017 m-3 and from 0.1 to 16 eV, respectively. The ECR plasma mode has contained hot electrons with a temperature of 75-100 eV and density of 1012 ~1013 m-3. Maximum electron temperature and density in the present ECR mode may be limited by instabilities of the plasma which is measured from the interferometer measurement.

    摘要1 Abstract2 致謝4 List of Figures8 Chapter 1 Introduction10 1.1 Plasmas - the Fourth State of Matter10 1.2 Plasma Sources11 1.3 Purpose of this Research12 Chapter 2 Magnetized Plasma Experiment (MPX) Device14 2.1 Plasma Sources in MPX15 2.1.1 Magnetron Oscillator System15 2.1.2 RF System16 2.1.3 Plasma Emitter and Hot Cathode16 2.2 Magnet Field System17 2.3 Diagnostic System in MPX18 2.3.1 Langmuir Probe System19 2.3.2 Microwave Interferometer System19 2.3.3 Spectroscopic Measurement system20 2.3.4 Data Acquisition System20 Chapter 3 Development of Plasma Emitter21 3.1 Child-Langmuir Law22 3.2 Richardson's Law24 3.3 Plasma Emitter in MPX25 3.3.1 Device Description25 3.3.2 Ion Source (Lithium beta-eucryptite)26 3.3.3 Electron Source (LaB6)27 3.3.4 Mixture of Beta-eucryptite and LaB628 3.4 Plasma Emission28 3.4.1 Ion Emission Test30 3.4.2 Electron Emission31 3.4.3 Plasma Emission33 3.5 Estimation of the Operating Parameter Space of Plasma Emitter35 Chapter 4 Visible Light Spectroscopic System37 4.1 Optical System39 4.2 Monochromator40 4.3 DAQ System42 4.4 Calibration43 4.4.1 Wavelength Calibration for Monochromator43 4.4.2 Intensity Calibration for Spectroscopic System45 Chapter 5 Estimation of Operation parameter Space of MPX47 5.1.1 Collisional and Radiative Model (CR model)47 5.1.2 FLYCHK53 5.2 Estimation Process57 5.2.1 Hot-Cathode Discharge58 5.2.2 ECR Discharge61 5.3 Operation Parameter Space of Hot-Cathode and ECR Modes64 Chapter 6 Summary65 References67

    [1]Nathan Rynn, Nicola D'Angelo, Rev. Sci. Instrum. 1960, 31, pp. 1326-1333.
    [2]C. M. Cooper, et al, Rev. Sci. Instrum. 81, 083503 (2010)
    [3]K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett.,37, 1980, pp. 37-38.
    [4]M. Ueda, et al, J. Phys. D Appl. Phys. 30 1997, pp. 2711–2716.
    [5]U Fantz, Plasma Sources Sci. Technol. 15 (2006) S137–S14.
    [6]F. F. Chen, Introduction to Plasma Physics and Controlled Fusion.
    [7]A. Thorne, Spectrosphyaics: Principles and Applications.
    [8]R . H. Griem (1997), Principles of Plasma Spectroscopy.
    [9]H. I. Hutchinson (2002): Principles of Plasma Diagnostics.
    [10]T. Fujimoto (2004), Plasma Spectroscopy (Oxford: Clarendon).
    [11]http://en.wikipedia.org/wiki/Thermionic_emission.
    [12]http://nlte.nist.gov/FLY/.
    [13]http://physics.nist.gov/PhysRefData/ASD/lines_form.html.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE