| 研究生: |
劉柔妘 Liu, Jou-Yun |
|---|---|
| 論文名稱: |
不同連接型態之二級熱電製冷片在考慮湯木森效應下之性能分析 A Study on the Performance of Two-stage Thermoelectric Coolers with Different Types under Thomson Effect |
| 指導教授: |
温昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 電子冷卻 、熱電製冷片 、熱電效應 、西貝克效應 、皮爾特效應 、湯木森效應 |
| 外文關鍵詞: | Electronic cooling, Thermoelectric cooler, Thermoelectric effect, Seebeck effect, Peltier effect, Thomson effect |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為分析不同連接型態(包括串聯、並聯與不同電流比之分離模式)的二級熱電製冷片之冷卻性能。
過去在其他有關於熱電製冷片的研究中,較多學者以固定熱電模組的熱端溫度與冷端溫度為邊界條件,而在本研究裡,取而代之的,我們以控制冷端熱負載為邊界條件,此設定是為了在實際應用時符合電子元件的已知輸入功率。另一方面,以熱電效應的原理為基礎,我們利用數值方法模擬二級熱電製冷片的內部溫度,其內部熱機制不只考慮焦耳效應,同時也將湯木森效應的影響列入考量,此外,為探討湯木森熱對二級熱電製冷片的內部溫度預測及熱傳機制之影響,我們建立三種不同的西貝克係數模型進行分析,包括常數西貝克係數模型(CSM)、二次多項式西貝克係數(PSM)及對數線性西貝克係數模型(LLS),並透過實驗及模擬檢測此三種模型之準確度及差異性。
主實驗以氣冷系統控制二級熱電模組之熱端溫度,改變輸入製冷片的電流,在不同冷端熱負載下記錄測試模組之冷端溫度及性能係數,以分析不同連接型態下(包括串聯、並聯與不同電流比之分離模式)二級熱電製冷片之冷卻性能,並根據實驗結果決定最佳連接型態。在預實驗中測量不同溫度下熱電製冷片之西貝克係數,將測量數據透過迴歸分析分別求得不同西貝克模型下西貝克係數對溫度的函數,並經由熱電效應關係式求得湯木森係數之函數,分析此三種西貝克係數模型之異同。此外,利用實驗測量的數據於不同西貝克係數模型下進行數值模擬,求出二級熱電製冷片之溫度分佈、冷端溫度及性能係數。最後比較模擬結果及實驗數據,決定最佳西貝克係數模型,並探討其誤差成因及湯木森效應之影響。
根據實驗及模擬結果,由於分離模式下電流比1:2之二級熱電製冷片模組在不同測試條件中具有優秀性能係數及良好冷卻能力,因此在本研究中決定將此模模式選為最佳測試模組(電流比為近冷端製冷片電流與近熱端製冷片電流之比值)。而最佳西貝克係數模型則為考慮湯木森效應之二次多項式模型(PSM),不僅西貝克係數為一溫度函數,且湯木森係數也為一與溫度相關之性質。於PSM模型下進行數值模擬,分析製冷片內部湯木森熱之分佈,過去多數學者忽略湯木森效應之影響,而本研究中發現在特定電流值範圍中,湯木森熱有助於增進熱電製冷片之冷卻能力,因此未來可能發展利用湯木森效應增進製冷片的性能之技術,其影響潛力不容小覷。
This research “A Study on the Performance of Two-stage Thermoelectric Coolers with Different Types under Thomson Effect” is mainly aimed at the analysis of the cooling performance of two-stage thermoelectric coolers test modules for different arrangements (serial, parallel and separate types for varied current ratios).
In previous investigations of thermoelectric cooler, constant hot and cold side temperatures of thermoelectric module were often chosen as boundary conditions. Instead, in this research we control the heat load of the cold side in order to meet the known allowable power input for the electronic components in practical application. On the other hand, not only Joule heat but also Thomson heat is taken into account in this research. In order to discuss the effect of Thomson heat on temperature prediction and the internal heat transfer mechanism of two-stage thermoelectric coolers, three different Seebeck coefficient models (Constant Seebeck Model, Quadratic Polynomial Seebeck Model and Log-linear Seebeck Model) are examined through experimental investigation and simulation.
With a variety of input current and current ratio, the heat load of the cold side, and the hot side temperature controlled by the blower system, the cold side temperature and the coefficient of performance (COP) of two-stage thermoelectric coolers with different types are obtained through the experiments to study the cooling performance. Seekbeck coefficient is measured by the pre-experiment and its dependence on temperature is developed into three different models by regression. Numerical analysis is then conducted to simulate the temperature distribution inside the two-stage thermoelectric coolers as well as the cold side temperature and the COP. The simulation and the experimental results are then compared and discussed for error analysis and the Thomson effect.
Results show that the separate type with current ratio 1:2 is viewed as the best type of two-stage thermoelectric coolers in this research. This type performs great COP and good cooling capacity under different conditions. Furthermore, we figure out the best Seebeck coefficient model is Quadratic Polynomial Seebeck Model (PSM model), which means Thomson coefficient is also dependent on temperature. In thermal analysis for Thomson heat with PSM model, Thomson heat can enhance the cooling capacity of thermoelectric cooler. This result shows that Thomson heat cannot be neglected in thermoelectric cooler investigation.
1. Seebeck, T.J., “Magnetische polarization der metalle und erzedurch temperature-differenz. abhand deut,” Akad. Wiss. Berlin, pp. 265-373, 1822.
2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques,” Ann. Chem., LVI, pp. 371-387, 1834.
3. Thomson, W., “On a mechanical theory of thermoelectric currents,” Proc. Roy. Soc. Edinburgh, pp. 91-98, 1851.
4. Altekirch, E., Physikalische Zeitschrift, 12, pp. 920-924, 1911.
5. Lars Onsager, “Reciprocal Relations is Irreversible Processes. I.,” Physical Review, Vol. 37, February, 1931.
6. Herbert B. Callen, “The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects,” Physical Review, Vol. 73, pp. 1349-1358, 1948.
7. Charles A. Domenicali, “Irreversible thermodynamics of thermoelectric effects in inhomogeneous, anisotropic media,” Physical Review, Vol. 92, pp. 877-881, 1953.
8. Abram Fedorovich Ioffe, Semiconductor thermoelements, and thermoelectric cooling, London :Infosearch, ltd., 1957.
9. H. J. Goldsmid, “Principles of thermoelectric devices,” British Journal of Applied Physics Vol. 11, pp. 209-217, 1960.
10. M. H. Norwood, “A comparison of theory and experiment for a thermoelectric cooler,” Journal of Applied Physics, Vol. 32, pp. 2559-2563, 1961.
11. Jincan Chen and Zijun Yan, “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator,” American Institute of Physics, J. Appl. Phys., Vol. 79, No. 11, 8823, June, 1996.
12. M. Yamanashi, “A new approach to optimum design in thermoelectric cooling systems,” American Institute of Physics, J. Appl. Phys., Vol. 80, No. 9, November, 1996.
13. X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “A general model for studying effects of interface layers on thermoelectric devices performance,” International Journal of Heat and Mass Transfer Vol. 45, pp. 5159-5170, 2002.
14. X. C. Xuan, “Analyses of the performance and polar characteristics of two-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 414-420, 2002.
15. X. C. Xuan , “On the optimal design of multistage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 625-629, 2002.
16. X.C. Xuan, “Optimum design of a thermoelectric device,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 114-119, 2002.
17. X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers,” Cryogenics, Vol. 42, pp. 273-278, 2002.
18. X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “Temperature-entropy diagrams for multi-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 18, pp. 273-277, 2003.
19. Luciana W. da Silva and Massoud Kaviany, “Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 2417-2435, 2004.
20. Ronggui Yang and Gang Chen, “Multistage thermoelectric microcoolers,” Journal of Applied Physics, Vol. 95, Number 12, pp. 8226-8232, 2004.
21. Marc Hodes, “On One-Dimensional Analysis of Thermoelectric Modules (TEMs),” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No.2, June, 2005.
22. Mei-Jiau Huang, “The influence of the Thomson effect on the performance of a thermoelectric cooler,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 413-418, 2005.
23. Yi-Hsiang Cheng and Chunkuan Shih, “Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm,” Applied Thermal Engineering, Vol. 26, pp. 937-947, 2006.
24. Kong Hoon Lee, “Analysis on the cooling performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1982-1992, 2007.
25. Yu-Wei Chang, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Enginnering, Vol. 29, pp. 2731-2737, 2009.
26. Osamu Yamashita, “Resultant Seebeck coefficient formulated by combining the Thomson effect with the intrinsic Seebeck coefficient of a thermoelectric element,” Energy Conversion and Management, Vol. 50, pp. 2394-2399, 2009.
27. P. Pichanusakorn and P. R. Bandaru, “The optimal Seebeck coefficient for obtaining the maximum power factor in thermoelectrics,” American Institute of Physics, Applied Physics Letters, Vol. 94, No. 22, 223108, 2009.
28. Chien-Yi Du, “Experimental Investigation and Numerical Analysis for One-stage Thermoelectric Cooler under Thomson Effect”, 2008.