簡易檢索 / 詳目顯示

研究生: 王亭鈞
Wang, Ting-Chun
論文名稱: 具高度產業競爭力之矽基光伏元件優化研究
Investigation of high industry competitiveness silicon-based optimized photovoltaic devices
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 塊材矽太陽能電池鑽石線切晶製程切割循環週期矽晶圓噴砂處理二氧化碳雷射輔助電漿增強式化學氣相沉積系統
外文關鍵詞: bulk silicon solar cell, diamond wire saw, slice cycle time, sandblast treatment, CO2 laser-assisted plasma enhanced chemical vapor deposition
相關次數: 點閱:81下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在溫室效應持續影響下,全球極端氣候現象日趨嚴重,所有替代能源之開發刻不容緩,包括將太陽能源全面性地應用於日常生活中的概念,是全體人類共同努力的目標。本論文內容敘述透過光伏電池製程端的優化及輔助設備的設計開發,有效地改善塊材矽太陽能元件及非晶矽薄膜太陽能電池元件之品質效率,達成在維持光伏產業高度競爭力的同時,也能大幅降低高效光伏電池元件的製造成本,如此一來,就能早日達到太陽能電網全面普及化的目標。
    多晶矽材料在矽塊材電池模組開發中,一直扮演著舉足輕重的角色。近年來,因鑽石線切割製程全面成為矽晶圓切晶的主流技術,其特點包含製程時間快速,並能大量減少矽原料的浪費,以及具備能將製程中所產生廢棄矽砂再回收利用等多重優點。但同時也存在著矽晶圓切片生產良率偏低及表面密集線痕嚴重等缺陷瓶頸,造成了多晶矽電池元件與單晶矽電池元件在整體效益上之差距日益漸增現象。
    本研究中,透過鑽石磨料切削時的循環週期時間調校,用以提升切削系統的總體移除能力,其實驗條件分別為80秒、160秒、240秒及320秒,透過延長循環週期能將鑽石磨料於製程中所受的總體摩擦力最小化,並延長切割磨料粒子穩定處於在高速切削狀態的時間,因此能有效地提升切晶系統的整體切削力。根據本研究結果顯示,最佳化的循環週期時間240秒,能使得多晶矽晶圓之量產良率提升至94.22%。
    在表面密集線痕改善方面,導入自行開發之x-y雙軸式微壓噴砂系統對矽晶圓片表面進行處理,矽晶圓表面平均反射率被大幅的降低,由原先的28.94%改善至22.28%,在電池元件效率的表現上,短路電流及轉換效率的表現分別達到8.70 A與17.92%,皆優於未經噴砂處理的元件表現,其短路電流為8.59 A以及轉換效率僅17.35%,此實驗結果證實透過微壓噴砂製程,表面密集線痕的確能有效地被移除而得到良好的光伏元件特性。
    同時針對非晶矽氫化薄膜元件製程方面,導入二氧化碳雷射輔助電漿增強式化學氣相沉積系統,可沉積具低氫濃度的高質量矽氫薄膜。並根據微拉曼光譜結果顯示,隨著二氧化碳雷射功率從0 W 逐漸增加到80 W,其微拉曼光譜訊號由波數 482 cm1 移動至 512 cm1,此結果顯示薄膜中晶相結構逐漸由非晶矽相位轉變為具微晶矽的狀態, 並透過 X 光繞射分析(XRD)實驗加以佐證,可觀察到經二氧化碳雷射輔助所成長之矽薄膜,具有明顯(111)、(220)和(311)的矽結晶訊號。並透過電池元件結構之照光衰退實驗後,證實透過二氧化碳雷射輔助之元件光衰退效率由31.9% 大幅改善至12.3% 。最終,透過氫氣電漿鈍化技術處理具微晶矽結構之p-SiC/i-Si/n-Si太陽能電池元件,其轉換效率可由6.89%被大幅提升至8.58%。

    Global warming has become a crisis of the first magnitude for the Earth. The rapid change of climate has caused serious problems as ecological imbalance. The low carbon renewable energy development is essential in humanity. The photovoltage (PV) device applied in daily life is an imperative means of reducing the greenhouse effect in the world. In order to keep the core competitive of solar mass production industry for photovoltage module panels popularizing. The purpose of this thesis is focus on silicon based solar cell performance improvement due to process optimization and unique equipment development, including crystalline silicon structure and amorphous silicon structure. The cost of device fabrication will be reduced significantly to achieve the solar electric grid dissemination.
    The multi-crystalline silicon- (mc-Si) based device plays an essential role in bulk PV-module industry around the world. In recent years, diamond wire sawing (DWS) technique has rapidly gained attention owing to it has some inherent advantages, such as short time of slicing process, less consumption of Si per unit capacity and Si kerf-recycling. However, the low slice yield and surface saw mark issue were observed in DWS slicing process. It’s the main two root causes of the benefit gap between the mono crystalline silicon based and multi crystalline silicon based.
    In this work, various reciprocating cycle times of 80, 160, 240, and 320 sec in the DWS process were adjusted to improve the slicing ability in solar industry. The total friction force of the slicing wires used in the DWS process with the short reciprocating cycle time was larger than that of the slicing wires used in the DWS process with the long reciprocating cycle time. With the longer cycle time, the process time of diamond abrasive grits with high velocity was increased. Therefore, the highest mass production yield of 94.22% for the DWS-sliced mc-Si wafers were obtained as the suitable reciprocating cycle time was 240 sec.
    For saw mark issue, the passivated surface of the mc-Si wafer was treated by using the x-y axis micro-pressure sandblast system. The average reflectivity of the DWS mc-Si wafers with sandblast process was reduced from 28.94% to 22.28%. The short-circuit current of 8.70 A and the power conversion efficiency of 17.92% for the DWS solar cells with micro-pressure sandblast treatment were respectively. The results were better than 8.59 A and 17.35% in comparison with the DWS mc-Si solar cells without micro-pressure sandblast treatment. The high performance of the mc-Si device with sandblast treatment was achieved due to the light-trapping ability improving.
    In hydrogenated amorphous silicon device optimization, the Si-based films with low hydrogen concentration were deposited using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD) system. According to the micro-Raman results, the Raman signal of the resulting Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated the crystallinity of the Si films was gradual transformation from amorphous to micro-crystalline. According to the X-ray diffraction (XRD) results, the micro-crystalline i-Si films with (111), (220), and (311) diffraction were obtained. In standard device test, the light degradation of the Si-based solar cells deposited by the LAPECVD was improved from 31.9% to 12.3%. In final, the power conversion efficiency of micro-crystalline Si-based solar cells fabricated by the LAPECVD with assisting laser power of 80 W was improved significantly from 6.89% to 8.58% in comparison with the Si-based solar cells fabricated by the LAPECVD without laser assisting.

    Abstract (in Chinese) I Abstract (In English) III 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 前言 1 1.1 研究背景與動機 1 1.2塊材矽太陽能電池 3 1.3矽薄膜太陽能電池 5 1.4論文內容段落導覽 5 文獻參考 8 第二章 製程理論 12 2.1塊材矽太陽能產業概論 12 2.2多晶矽光伏元件的挑戰 14 2.2.1矽晶圓切晶製程 15 2.2.2 多晶鑽石線切晶良率提升方法 16 2.2.3切線循環週期 18 2.2.4 物理性噴砂製程 20 2.3矽氫薄膜太陽能電池 21 2.3.1氫化非晶矽薄膜 21 2.3.2 二氧化碳雷射輔助電漿增強式化學氣相沉積系統 22 文獻參考 23 第三章 太陽能電池元件特性概論 33 3.1太陽能電池基本特性簡介 33 3.1.1半導體照光現象 33 3.1.2光特性以及p-n接面運用 33 3.2 太陽能電池元件參數定義 35 3.2.1元件運作特性及重要參考 35 3.2.2電池元件光譜響應及量子效率 36 3.3 多晶矽太陽能電池結構 37 3.4 非晶矽太陽能電池結構 38 參考文獻 40 第四章 矽晶圓片切晶製程之進線循環週期研究 43 4.1 進線循環週期模式解析 43 4.2 不同進線循環週期之矽晶圓片品質比較 46 參考文獻 49 第五章 x-y雙軸式微壓噴砂系統於太陽能電池製程上的應用 57 5.1多晶矽鑽石線晶圓表面狀態分析 57 5.2 表面線痕移除測試實驗 58 5.3 噴砂處理多晶電池元件效率驗證 60 參考文獻 64 第六章 二氧化碳雷射於矽薄膜太陽能電池元件之應用 75 6.1二氧化碳雷射輔助矽薄膜成長之特性分析 75 6.2二氧化碳雷射輔助對於太陽能元件的影響分析 77 參考文獻 80 第七章 結論及未來展望 87

    第一章 文獻參考
    [1] J. Hansen, M. Sato, and R. Ruedy, “Perception of climate change,” Proc. Natl. Acad. Sci. U.S.A., vol. 109, pp. 2415–2423, 2012.
    [2] S. Wang, S. Leduc, S. Wang, M. Obersteiner, C. Schill, and Koch, B. “Perception of climate change,” Int. J. Energy Res., vol. 33, pp. 778–786, 2009.
    [3] T. Yue, Y. Wang, and Y. Wang, “Research on the promotion of solar energy house,” In: International Conference on Materials for Renewable Energy & Environment, pp. 247250, 2011.
    [4] M. R. Abdelkader, A. A. Salaymeh, Z. A. Hamamre, and F. Sharaf, “A comparative analysis of the performance of monocrystalline and multiycrystalline PV cells in semi arid climate conditions: the case of Jordan,” Jordan J. Mech. Ind. Eng., vol. 4, pp. 543–552, 2010.
    [5] H. J. Moller, C. Funke, M. Rinio, and S. Scholz, “Multicrystalline silicon for solar cells,” Thin Solid Films, vol. 487, pp.179–187, 2005.
    [6] H. Wu, S. N. Melkote., and S. Danyluk, “Mechanical strength of silicon wafers cut by loose abrasive slurry and fixed abrasive diamond wire sawing,” Adv. Eng. Mater., vol. 14, pp. 342–348, 2012.
    [7] N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, and I. Sakata, “Characterization of poly crystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire,” Prog. Photovolt. Res. Appl., vol. 18, pp. 485–490, 2010.
    [8] W. H. Chen, X. M. Liu, M. Li, C. Q. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multi-crystalline silicon wafers,” Mater. Sci. Semicond. Process., vol. 27, pp. 220–227, 2014.
    [9] P. Ge, J. Meng, and Z. Ho, “Research on monocrystalline silicon slicing with fixed abrasive diamond wire saw,” Int. J. Mach. Mach. Mater., vol. 1, pp. 333–342, 2006.
    [10] T. Enomoto, Y. Shimazaki, Y. Tani, M. Suzuki, and Y. Kanda., “Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot,” CIRP Ann–Manuf. Technol., vol. 48, pp. 273–276, 1999.
    [11] Y. Chiba, Y. Tani, T. Enomoto, and H. Sato, “Development of a high speed manufacturing method for electroplated diamond wire tools,” CIRP Ann–Manuf. Technol., vol. 52, pp. 281–284, 2003.
    [12] H. H. K. Xu, and S. Jahanmir, “Microfracture and material removal in scratching of alumina,” J. Mater. Sci., vol. 30, pp. 2235–2250, 1995.
    [13] F. Yang and I. Kao, “Free abrasive machining in slicing brittle materials with wire saw,” J. Electron. Packag. ASME. Trans., vol.123, pp. 254–259, 2001.
    [14] T. Liedke and M. Kuna, “A macroscopic mechanical model of the wire sawing process,” Int. J. Mach. Tool. Manu., vol. 51, pp. 711–720, 2011.
    [15] H. Wu, “Wire sawing technology: A state-of-the-art review,” Precision Eng., vol. 43, pp.1–9, 2016.
    [16] X. G. Yu, P. Wang, X. Q. Li, and D. R. Yang, “Thin Czochralski silicon solar cells based on diamond wire sawing technology,” Sol. Energy Mater. Sol. Cells. vol. 98, pp. 337342, 2012.
    [17] K. Tomono, S. Miyamoto, T. Ogawa, H. Furuya, Y. Okamura, M. Yoshimoto, R. Komatsu, and M. Nakayama, “Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach,” Sep. Purif. Technol., vol.120, pp. 304309, 2013.
    [18] Y. Gao and P. Ge1, “Analysis of grit cut depth in fixed-abrasive diamond wire saw slicing single crystal silicon,” Solid State Phenom, vol. 175, pp.7276, 2011.
    [19] S. Schwinde, M. Berg, and M. Kunert, “New potential for reduction of kerf loss and wire consumption in multi-wire sawing,” Sol. Energy Mater. Sol. Cells., vol. 136, pp. 4447, 2015.
    [20] C. C. A. Chen and P. H. Chao, “Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells,” Adv. Mater. Res., vol. 126, pp. 177–180, 2010.
    [21] Y. F. Zhuang, S. H. Zhong, Z. G. Huang, and W. Z. Shen, “Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells,” Sol. Energy Mater. Sol. Cells., vol. 153, pp. 18–24, 2016.
    [22] F. Cao, K. Chen, J. J. Zhang, X. Ye, J. J. Li, S. Zou, and X. D. Su, “Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency,” Sol. Energy Mater. Sol. Cells., vol. 141, pp. 132–138, 2015.
    [23] D. S. Rubya, S. H. Zaidi, S. Narayanan, B. M. Damianid, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells., vol. 74, pp. 133-138, 2002.
    [24] J. Yoo, “Reactive ion etching (RIE) technique for application in crystalline silicon solar cells,” Sol. Energy, vol. 84, pp. 730–734, 2010.
    [25] D. S. Ruby, S. Zaidi, S. Narayanan, S. Yamanaka, and R. Balanga, “RIE-texturing of industrial multicrystalline silicon solar cells,” J. Sol. Energy Eng., vol. 127, pp. 146–149, 2005.
    [26] A. Kumaai, “Texturization using metal catalyst wet chemical etching for multicrystalline diamond wire sawn wafer,” Sol. Energy Mater. Sol. Cells., vol.133, pp. 216–222, 2015.
    [27] M. Lippold, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, and E. Kroke, “Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO3–H2SO4 mixtures,” Sol. Energy Mater. Sol. Cells., vol. 127, pp. 104–110, 2014.
    [28] H. Takato, I. Sakata, K. Mase, S. Ishibashi, T. Harada, Y. Kondo, and H. Asai, “Method for fabricating substrate for solar cell,” U. S. Patent No. 13, 982, 104, 2013.
    [29] B. O. Buckland and D. C. Berkey, “Atomizing nozzle for spraying viscous liquids,” U. S. Patent No. 2, 595,759, 1952.
    [30] K. Nishioka, K. Ikematsu, Y. Ota, and K. Araki, “Sandblasting durability of acrylic and glass Fresnel lenses for concentrator photovoltaic modules,” Sol. Energy, vol. 86, pp. 3021–3025, 2012.
    [31] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett., Vol. 31, pp. 292–294, 1977.
    [32] C. T. Lee and C. H. Lin, “Si nanocrystals embedded in Si suboxide matrix grown by laser-assisted chemical vapor deposition at room temperature,” Jpn. J. Appl. Phys., vol. 43, pp. 2793–2794, 2004.
    [33] C. T. Lee, C. H. Lin, T. H. Lee, and T. C. Tsai, “Photoluminescence degradation and passivation mechanisms of Si nanoclusters in silicon oxide matrix,” Jpn. J. Appl. Phys., vol. 44, pp. 4240–4244, 2005.
    [34] C. T. Lee, J. H. Cheng, and H. Y. Lee, “Crystalline SiGe films grown on Si substrates using laser-assisted plasma-enhanced chemical vapor deposition at low temperature,” Appl. Phys. Lett., vol. 91, pp. 091920-1–091920-3, 2007.
    [35] T. C. Tsai, L. Z. Yu, and C. T. Lee, “Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature,” Nanotechnology, vol. 18, pp. 275707-1–275707-5, 2007.
    [36] C. T. Lee, Y. F. Chen, and C. H. Lin, “Phase-separated Si nanoclusters from Si oxide matrix grown by laser-assisted chemical vapor deposition,” Nanotechnology, vol. 20, pp.025702-1–.025702-6, 2009.
    [37] B. R. Wu, D. S. Wu, M. S. Wan, W. H. Huang, H. Y. Mao, and R. H. Horng, “Fabrication of nc-Si/c-Si solar cells using hot-wire chemical vapor deposition and laser annealing,” Sol. Energy Mater Sol. Cells, vol. 93, pp. 993–995, 2009.
    [38] A. V. Shah, J. Meier, and E. V. Sauvain, “Material and solar cell research in microcrystalline silicon,” Sol. Energy Mater Sol. Cells, vol. 78, pp. 469–491, 2003.
    [39] A. Descoeudres, L. Barraud, and S. Wolf, “Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment,” Appl. Phys. Lett., vol. 99, pp. 123506-1–123506-3, 2011.
    [40] A. Ulyashin and A. Sytchkova, “Hydrogen related phenomena at the ITO/a-Si:H/Si heterojunction solar cell interfaces,” Phys. Status Solidi A, vol. 210, pp. 711–716, 2013.
    [41] F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, and H. W. Liu, “Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells,” Curr. Appl. Phys., vol. 11, supplement 1, pp. 12–16, 2011.
    [42] K. Imamura, M. Takahashi, A. Asuha, Y. Hirayama, S. Imai, and H. Kobayashi, “Nitric acid oxidation of Si method at 120C: HNO3 concentration dependence,” J. Appl. Phys., vol. 107, pp. 054503-1–054503-5, 2010.
    [43] J. H. Choi, S. C. Roh, J. D. Jung, and H. I. Seo, “Chemical HF treatment for rear surface passivation of crystalline silicon solar cells,” Trans. Electr. Electron. Mater., vol. 14, pp. 203–207, 2013.
    [44] H. Angermann, J. Rappich, and C. Klimm, “Wet-chemical treatment and electronic interface properties of silicon solar cell substrates,” Cent. Eur. J. phys., vol. 7, pp. 363–370, 2009.
    [45] M. Bhaisare, A. Misra, and A. Kottantharayil, “Aluminum oxide deposited by pulsed-DC reactive sputtering for crystalline silicon surface passivation,” IEEE J. Photovolt., vol. 3, pp. 930–935, 2013.

    第二章 參考文獻
    [1] M. Gul, Y. Kotak, and T. Muneer, “Review on recent trend of solar photovoltaic technology,” Energy Explor. Exploit., vol. 34, pp. 485–526, 2016.
    [2] P. A. Bosore, “Defining terms for crystalline silicon solar cells,” Prog. Photovolt., vol. 2, pp.177–179, 1994.
    [3] G. Fisher, M. R. Seacrist, and R. W. Standley, “Silicon crystal growth and wafer technologies,” Proc. IEEE Inst. Electr. Electron Eng., vol. 100, pp. 1454–1474, 2012.
    [4] J. Li, I. Kao, and V. Prasad, “Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots: application to silicon wafer production,” J. Electron Packaging, vol. 120, pp. 123–128, 1998.
    [5] M. A. Green and A. W. Blakers, “Characterization of high-efficiency silicon solar cells.” J. Appl. Phys., vol. 58, pp. 4402–4408, 1985.
    [6] H. Wu, S. N. Melkote, and S. Danyluk, “Mechanical strength of silicon wafers cut by loose abrasive slurry and fixed abrasive diamond wire sawing,” Adv. Eng. Mater., vol. 14, pp. 342–348, 2012.
    [7] A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells., vol. 114, pp. 110–135, 2013.
    [8] A. Gupta, C. Chang, A. Chen, and H. W. Hsu, “Study on diamond wire wear, surface quality, and subsurface damage during multi-wire slicing of c-plane sapphire wafer,” Int. J. Adv. Manuf. Technol., vol. 100, pp. 1801–1814, 2019.
    [9] F. Yang and I. Kao, “Free abrasive machining in slicing brittle materials with wire saw” J. Electron. Packag. ASME. Trans., vol.123, pp. 254–259, 2001.
    [10] N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, I. Sakata, “Characterization of poly crystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire,” Prog. Photovolt. Res. Appl., vol. 18, pp. 485–490, 2010.
    [11] B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, and K. Kakimoto, “Single seed casting large-size monocrystalline silicon for high-efficiency and low-cost solar cells,” Engineering, vol. 1, pp. 378–383, 2015.
    [12] U. Hashim, A. A. Ehsan, and I. Ahmad, “High purity polycrystalline silicon growth and characterization,” Chiang Mai J. Sci., vol. 34, pp. 47–54, 2007.
    [13] A. Kumar. and S. N. Melkote, “Wear of diamond in scribing of multi-crystalline silicon,” J. Appl. Phys., vol. 124, pp. 065101-1–065101-7, 2018.
    [14] B. Sopori, S. Devayajanam, and P. Basnyat, “Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells,” AIMS Mater. Sci., vol. 3, pp. 669–685, 2016.
    [15] T. Liu, P. Ge, and W. Bi, “The influence of wire speed on phase transitions and residual stress in single crystal silicon wafers sawn by resin bonded diamond wire saw,” Micromachines, vol. 12, pp. 429-1–429-11, 2021.
    [16] W. H. Chen, X. M. Liu, M. Li, C. Q. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multi-crystalline silicon wafers,” Mater. Sci. Semicond. Process., vol. 27, pp. 220–227, 2014.
    [17] H. Kim, D. Kim, C. Kim, and H. Jeong, “Multi-wire sawing of sapphire crystals with reciprocating motion of electroplated diamond wires,” CIRP. Ann. Manuf. Technol., vol.62 pp.335–338, 2013.
    [18] Y. Y. Tsai, M. C. Wu, Y. S. Liao, C. C. Tsao, and C. Y. Hsu, “Slicing ceramics on material removed by a single abrasive particle,” Materials, vol. 13, pp. 4324-1–4324-13, 2021.
    [19] C. C. A. Chen and P. H. Chao, “Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells,” Adv. Mat. Res., Vol. 126, pp. 177–180, 2010.
    [20] D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multi-crystalline silicon solar cells,” vol. 74, pp. 133–137, 2002.
    [21] C. C. A. Chen and P. H. Chao, “Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells” Adv. Mat. Res., Vol. 126, pp. 177–180, 2010.
    [22] Y. H. Lin, F. M. Huang, H. C.Wu, C. H.Yeh, C. C. Chang, and J. W. Chien, “High efficiency passivated emitter rear contact solar cells with diamond wire saw multi-crystalline Silicon wafers,” Procedia Manuf., vol. 130, pp. 55–59, 2017.
    [23] M. Lahori, R. Nagrath, S. Sisodia, and P. Dagar, “The effect of surface treatments on the bond strength of a nonprecious alloy–ceramic interface: an invitro study,” J. Indian Prosthodont. Soc., vol. 14, pp. 151–155, 2014.
    [24] P. J. Smitha, and A. Morrinb, “Reactive inkjet printing,” J. Mater. Chem. A, vol. 22, pp. 10965–10970, 2012.
    [25] R. E. I. Schropp and M. Zeman, “New developments in amorphous thin-film silicon solar cells,” IEEE Trans. Electron Devices, vol. 46, pp.2086–2092, 1999.
    [26] R. Ambrosio, M. Moreno, A. Torres, A. Carrillo, I. Vivaldo, I. Cosme, and A. Heredia, “Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells,” J. Alloy. Compd., vol. 643, pp. s27–s32, 2015.
    [27] C. Radue and E. E. V. Dyk, “A comparison of degradation in three amorphous silicon PV module technologies,” Sol. Energy Mater Sol. Cells, vol. 94, pp. 617–622, 2010.
    [28] A. Conneely, J. Nilsen, and G. M. O’Connor, “Investigation of the impact of CO2 laser wavelength on the cutting efficiency of polymer films,” J. Laser Appl., vol.134, pp.134–140, 2014.

    第三章 參考文獻
    [1] M. Wolf, “Historical development of solar cells,” IEEE Press, vol. 274, 1976.
    [2] V. Azaroff and J. J. Broohy, “Electronic Processes in Materials,” (New York: McGraw-Hill Book Company, 1963)
    [3] S. Wang, Solid-State Electronics (New York: McGraw-Hill Book Company, 1966)
    [4] H. C. Card and E. S. Yang, “Electronic processes at grain boundaries in polycrystalline semiconductors under optical illumination,” IEEE Trans. Electron Devices, vol. 24, pp. 392–402, 1977.
    [5] D. Jordan, and J. P. Nagel, “Buried contact concentrator solar cells,” Prog. Photovolt, vol. 2, pp. 171–176, 1994.
    [6] B. H. Hamadani, J. Roller, B. Dougherty, F. Persaud, and H. W. Yoon, “Absolute spectral responsivity measurements of solar cells by a hybrid optical technique,” Appl. Opt., vol. 52, pp. 5184–5193, 2013.
    [7] R. Rothemunda, S. Kreuzera, T. Umunduma, G. Meinhardtb, T. Fromherza, and W. Jantscha, “External quantum efficiency analysis of Si solar cells with II-VI nanocrystal luminescent down-shifting layers,” Eng. Proc., vol.10, pp. 83–87, 2011.
    [8] A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics, vol. 3, pp. 1184–119, 2013.
    [9] S. D. Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review,” Green, vol. 2, pp. 7–24, 2012.
    [10] T. Yanagisawa, “Estimation of the degradation of amorphous silicon solar cells,” Microelectron. Reliab., vol. 37, pp. 549-554, 1997.

    第四章 參考文獻
    [1] T. C. Wang, T. H. Yeh, S. Y. Chu, H. Y. Lee, and C. T. Lee, “Developed diamond wire sawing technique with high slicing ability for multi crystalline silicon wafers,” Mater. Manuf. Process., vol. 35, pp. 1727–1731, 2020.
    [2] G. Sadegheslam, R.Mikaeil, R. Rooki, S.Ghadernejad, and M. Ataei, “Predicting the production rate of diamond wire saws using multiple nonlinear regression analysis,” Geosystem Eng., vol. 16, pp. 4-1–4-11, 2013.
    [3] A. Kumar, S. Kaminski, and C. Arcona, “Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers,” wear, vol. 364, pp. 163–168, 2016.
    [4] D. Halliday, R. Resnick, and J. Walker, “Fundamentals of Physics,” John Wiley & Sons Inc., USA, 2011.
    [5] N. Erceg and I. Aviani, “Students’ Understanding of Velocity-Time Graphs and the Sources of Conceptual Difficulties,” Croat. J. Educ., vol. 16, pp. 43–80, 2014
    [6] B. Wang, Z. Liu, G. Su, and Xing Ai, “Brittle removal mechanism of ductile materials with ultrahigh-speed machining,” J. Manuf. Sci. Eng., vol. 137. pp. 061002-1–061002-9, 2015.
    [7] S. L. Nedelec1, J. Campbell, A. N. Radford, S. D. Simpson, and N. D. Merchant, “Particle motion: the missing link in underwater acousticecology,” Methods Ecol. Evol., vol. 7, pp. 836–842, 2016.
    [8] S. Li, A. Tang, Y. Liu, J. Wang, D. Cui, and R. G. Landers, “Analytical force modeling of fixed abrasive diamond wire saw machining with application to SiC monocrystal wafer processing,” J. Manuf. Sci. Eng., vol. 139, pp. 041003-1–041003-11, 2017.
    [9] T. Liu, P. Ge, W. Bi, and Y. Gao, “A new method of determining the slicing parameters for fixed diamond wire saw,” Mater. Sci. Semicond. Process, vol. 120, pp. 105252-1–105252-7, 2020.
    [10] K. Joshi, U. V. Bhandarkar, and S. S. Joshi, “Surface integrity and wafer-thickness variation analysis of ultra-thin silicon wafers sliced using wire-EDM,” Adv. Mater Process Technol., vol. 5, pp. 512–525, 2019.
    [11] B. Sopori, S. Devayajanam, and P. Basnyat, “A method for determining average damage
    depth of sawn crystalline silicon wafers,” Rev. Sci. Instrum., vol. 87, pp. 045104-1–045104-6, 2016.
    [12] Y. Jiang, H. Shen, T. Pu, C. Zheng, Q. Tang, W. Yang, J. Wu, C. Rui, and Y. Li, “Hybrid process for texturization of diamond wire sawn multicrystalline silicon solar cell,” Phys. Status. Solidi-R. vol. 12, pp. 870–873, 2016.
    [13] E. Teomete, “Mechanics of wire saw machining process: experimental analyses and modeling,” Ph. D. dissertation, Engineering Mechanics Dept. Iowa State, Univ. of Iowa State, U.S.A., 2008.
    [14] L. Cartona, R. Riva, D. Nelias, M. Fourmeau, F. Coustier, and A. Chabli, “Comparative analysis of mechanical strength of diamond-sawn silicon wafers depending on saw mark orientation, crystalline nature and thickness,” Sol. Energy Mater. Sol. Cells., vol. 201, pp. 110068-1–110068-13, 2019.
    [15] K. Mori1, S. Samata1, N. Mitsugi1, A. Teramoto, R. Kuroda, T. Suwa, K. Hashimoto, and S. Sugawa, “Influence of silicon wafer surface roughness on semiconductor device characteristics,” Jpn. J. Appl. Phys., pp.6-1–6-6, 2020.
    [16] R. Horvath, A. D. Kiss, G. Matyasi, “The examination of surface roughness parameters in the fine turning of hypereutectic aluminium alloys,” U.P.B. Sci. Bull. Series D, Vol. 77, pp. 205–216, 2015.
    [17] M. Streit, “Bar charts and box plots,” Nat. Methods, vol. 11, pp. 116–117, 2014.

    第五章 參考文獻
    [1] A. Kailer, Y. G. Gogotsi, and K. G. Nickel, “Phase transformations of silicon caused by contact loading,” J. Appl. Phys., vol. 81, pp. 3057–3063, 1997.
    [2] P. H. Tsai, Y. C. Chou, S. W. Yang, Y. C. Chen, and C. H. Wu, “A comparison of wafers sawn by resin bonded and electroplated diamond wire—From wafer to cell,” IEEE 39th Photovoltaic Specialists Conference, 2013.
    [3] K. P. Sreejith, A. K. Sharma, and S. Behera, “A low cost additive-free acid texturing process for large area commercial diamond-wire-sawn multi-crystalline silicon solar cells,” Sol. Energy, vol. 205, pp. 263–274, 2020.
    [4] G. Su, R. Jia, X. Dai, K. Tao, H. Sun, Z. Jin, and X. Liu, “The influence of black silicon morphology modification by acid etching to the properties of diamond wire sawn multi-crystalline silicon solar cells,” IEEE J. Photovolt., vol. 8, pp. 937–942, 2018.
    [5] X. Li, K. Tao, H. Ge, D. Zhang. Z. Gao, R. Jia, S. Chen, Z. Ji, Z. Jin, and X. Liu, “Improvement of saw damage removal to fabricate uniform black silicon nanostructure on large-area multi-crystalline silicon wafers,” Sol. Energy, vol. 204, pp. 577–584, 2020
    [6] B. Meinel, T. Koschwitz, and J. Acker, “Textural development of SiC and diamond wire sawed sc-silicon wafer,” Energy Procedia. 27, vol. 18, pp. 330–336, 2012.
    [7] B. Meinel, T. Koschwitz, C. Blocks, and J. Acker, “Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation,” Mater. Sci. Semicond. Process., vol. 26, pp. 93–100, 2014.
    [8] T. C. Wang, H. Y. Lee, C. T. Lee, Y. C. Cheng, and H. W. Chen, “Investigated performance improvement of the micro-pressure sandblast-treated multi-crystalline Si wafer sliced using diamond wire sawing,” Sol. Energy, vol. 161, pp. 220–225, 2018.
    [9] N. Bouaouada, S. Bouzid, M. Hamidouche, C. Bousba, and M. Madjoubi, “Effects of sandblasting on the efficiencies of solar panels,” Applied Energy, vol.65, pp. 99–105, 2000.
    [10] X. F. Brun and S. N. Melkote,“Analysis of stresses and breakage of crystalline silicon wafers during handling and transport, ” Sol. Energy Mater Sol. Cells, vol. 93, pp. 1238–1247, 2009.
    [11] S. Gouttebroze, H. I. Lange, X. Ma, R. Glockner, B. Emamifard, M. Syvertsen, M. Vardavoulias , and A. Ulyashin, “Comparative analysis of mechanical properties of Si substrates processed by different routes,” Phys. Status Solidi A, pp. 1–8, 2013.
    [12] Y. Yang, L. Wu, X. Hao, Z. Tang, H. Lai, J. Zhang, W. Wang, and L. Feng, “Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells,” RSC Adv., vol. 9, pp. 28561–28568, 2019.
    [13] D. F. Williamson, R. A. Parker, and J. S. Kendrick, “The box plot: a simple visual method to interpret data,” Ann. Intern. Med. vol. 110, pp. 916–921, 1989.
    [14] D. Echizenya, H. Sakamoto, and K. Sasaki, “Effect of mechanical surface damage on Silicon wafer strength,” Procedia Eng., vol. 10, pp. 1440–1445, 2011.
    [15] T. Pu, H. Shen, C. Zheng, Y. Xu, Y. Jiang, Q. Tang, W. Yang, C. Rui, and Y. Li, “Temperature effect of nano-structure rebuilding on removal of DWS mc-Si marks by Ag/Cu MACE process and solar cell,” Energies, vol. 13, pp. 4890-1–4890-7, 2020.
    [16] F. Cao, K. Chen, J.J. Zhang, X. Ye, J.J. Li, S. Zou, and X. D. Su, “Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency,” Sol. Energy Mater. Sol. Cells., Vol. 141, pp. 132–138, 2015.
    [17] M. Lippold, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, and E. Kroke, “Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO3–H2SO4 mixtures,” Sol. Energy Mater. Sol. Cells., vol. 127, pp. 104–110, 2014.
    [18] L. Scholtz, L. Ladanyi, and J. Mullerova, “Influence of surface roughness on optical characteristics of multilayer solar cells,” Appl. Phys. Lett., vol. 12, pp. 631–638, 2014.
    [19] R. Gogolin, M. Turcu, R. Ferre, J. Clemens, N. P. Harder, R. Brendel, and J. Schmidt, “Analysis of series resistance losses in a-Si:H/c-Si heterojunction solar cells,” IEEE J. Photovolt., vol. 4, pp. 1169–1176, 2014.
    [20] J. Jin, H. Shen, P. Zheng, K. S. Chan, X. Zhang, and H. Jin, “>20.5% Diamond wire sawn multicrystalline silicon solar cells with maskless inverted pyramid like texturing,” IEEE J. Photovolt., vol.7, pp. 1264–1269, 2017.

    第六章 參考文獻
    [1] W. Beyer, and M. S. Abo Ghazala, “Absorption strengths of Si-H vibrational modes in hydrogenated silicon,” Mat. Res. Soc. Symp. Proc., vol. 507, pp. 601–606, 1998.
    [2] C. Freysoldt, G. Pfanner, and J. Neugebauer, “The dangling-bond defect in amorphous silicon: Statistical random versus kinetically driven defect geometries,” J. Appl. Phys., vol. 81, pp. 3057–3063, 1997. J. Non. Cryst. Solids, vol. 358, pp. 2063–2066, 2012.
    [3] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B, vol. 45, pp. 13367–13377, 1992.
    [4] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B, vol. 16, pp. 3556–3571,1977.
    [5] J. Gope, S. Kumar, A. Parashar , P. N. Dixit, C. M. S. Rauthan, O. S. Panwar, and D. N. Patel, “Amorphous and nanocrystalline silicon made by varying deposition pressure in PECVD process,” J. Non. Cryst. Solids, vol. 355, pp. 2228–2232, 2009.
    [6] D. Han, J. D. Lorentzen, J. R. Weinberg-Wolf, and L. E. McNeil, “Raman study of thin films from amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys., vol. 94, pp. 2930–2936.
    [7] Z. Wu, Q. Lei, and J. Xi, “Hydrogenated microcrystalline silicon films prepared by VHF-PECVD and single junction solar cell,” J. Mater. Sci., vol. 41, pp. 1721–1724, 2006.
    [8] J. Meier, S. Dubail, J. Cuperus, U. Kroll, R. Platz, P. Torres, J. A. A. Selvan, P. Pernet, N. Beck, N. P. Vaucher, Ch. Hof, D. Fischer, H. Keppner, and A. Shah, “Recent progress in micromorph solar cells,” J. Non. Cryst.” Solids, vol. 227, pp. 1250–1256, 1998.
    [9] G. O. Osayemwenre and E. L. Meyer, “Confirmation of the degradation of single junction amorphous silicon modules (a-Si:H),” Int. J. Photoenergy, vol. 2019, pp. 3452180-1–3452180-13, 2019.
    [10] M. H. Kao, C. H. Shen, P. C. Yu, W. H. Huang, Y. L. Chueh, and J. M. Shieh, Confirmation of the degradation of single junction amorphous silicon modules (a-Si:H), “Low-temperature growth of hydrogenated amorphous silicon carbide solar cell by inductively coupled plasma deposition toward high conversion efficiency in indoor lighting,” Sci. Rep., vol. 7, pp. 12706-1–12706-8, 2017.
    [11] L. Serenelli, R. Chierchia, M. Izzi, M. Tucci, L. Martini, D. Caputo, R. Asquini, and G. de Cesare, “Hydrogen plasma and thermal annealing treatments on a-Si:H thin film for c-Si surface passivation,” Phys. Procedia, vol. 60, pp. 102–108, 2014.
    [12] H. Y. Lee, T. C. Wang, and C. Y. Tseng, “Performance improvement of microcrystalline p-SiC/i-Si/n-Si thin film solar cells by using laser-assisted plasma enhanced chemical vapor deposition,” Int. J. Photoenergy, vol. 2014, pp. 795152-1–795152-5, 2014.
    [13] M. Dadu, A. Kapoor, and K. N. Tripathi, “Effect of operating current dependent series resistance on the fill factor of a solar cell,” Sol. Energy Mater Sol. Cells, vol. 71, pp. 213-218, 2002.
    [14] A. Ghahremani and A. E. Fathy, “High efficiency thin- film amorphous silicon solar cells,” Energy Sci. Eng., vol. 4, pp. 334–343, 2016.
    [15] Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, and F. Finger, “Microcrystalline silicon solar cells deposited at high rates,” J. Appl. Phys. vol. 97, pp. 114913-1–114913-1, 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE