| 研究生: |
陳建勛 Chen, Chien-Hsun |
|---|---|
| 論文名稱: |
泥岩動態特性與單向加載行為之探討 Investigation of Dynamic Properties and Monotonic Loading Behaviors of Mudstone |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 泥岩 、剪力波速 、預壓密應力 、動態特性 、剪力強度 |
| 外文關鍵詞: | mudstone, shear wave velocity, preconsolidation pressure, dynamic properties, shear strength |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在研究台灣南部恆春地區泥岩動態性質與單向加載行為,使用剪力波速量測系統、動力三軸系統與靜態三軸系統對不同深度的現地泥岩岩心進行系列試驗。試驗分為兩部分,第一部分為泥岩動態性質試驗,包含壓密後剪力波速量測試驗,控制不同有效壓密應力由剪力波速變化求取現地泥岩預壓密應力(σ_p^')與最大剪力模數(Gmax),並結合動力三軸試驗推求泥岩動態特性,控制不同有效圍壓與應力狀態,探討對泥岩動態特性的影響再與共振柱試驗結果互相整合,獲得台灣南部泥岩完整動態特性曲線。第二部分則為泥岩單向加載試驗,以靜態三軸壓密不排水壓縮試驗獲得泥岩單向加載下完整應力應變關係、超額孔隙水壓變化及剪力強度參數。由系列試驗試驗結果顯示,本研究之現地泥岩推估為正常壓密至輕度過壓密狀態,而泥岩動態特性試驗結果,大致落在Vucetic and Dobry (1991) 提出的典型黏土曲線中低塑性區域,與泥岩組成為黏土之特徵相符,在不同有效圍壓、過壓密比條件下,皆會影響泥岩動態特性。泥岩單向加載下,剪力強度參數:凝聚力約17~36 kPa,有效摩擦角約23°~42°。壓密狀態下正割楊氏模數E50約9~27 MPa,而其對應軸向應變ε_50約1~2.4 % ;本研究泥岩屬極軟弱岩石或硬黏土。
The purpose of this research is to investigate the dynamic properties and monotonic loading behaviors of mudstone extracted from southern Taiwan. The experiments are divided into two parts, first part is the dynamic properties of mudstone, including the shear wave velocity measurement test after consolidation to estimate preconsolidation pressure of mudstone by its shear wave velocity. After that, combining with dynamic triaxial test to investigate dynamic properties of mudstone, and discussing the influence of effective confining pressure and stress state. Finally, to obtain completed dynamic properties curves of mudstone in southern Taiwan, the result of resonance column tests were combined. The second part is monotonic loading behaviors of mudstone, variation of stress and excess pore water pressure with axial strain, shear strength parameters of mudstone under monotonic loading are obtained by triaxial test under consolidated-undrained state.
The results show that the mudstone in the field estimated to be normally consolidated to slightly overconsolidated. The dynamic properties of mudstone that normalized shear modulus reduction curves and damping ratio curves are roughly at the low plasticity area suggested by Vucetic and Dobry (1991), this results are correspond to classification of mudstone by Unified Soil Classification System. Effective confining pressures and OCR affect the dynamic properties of mudstone like clay. As to shear strength parameters, cohesion is about 17~36 kPa and effective friction angle is about 23°~42°. Secant Young’s modulus (E50) is about 9 ~27 MPa, which is very weak rock or stiff clay.
1. Anderson, D. G., and Richart, F. E., “ Effect of shearing on shear modulus of clays, ” Journal Geotechnical Engineering Division, ASCE, Vo1. 102, No. GT9, pp. 975-987, 1976.
2. Anderson, Donald G., and Frank E. Richart Jr., “ Effects of straining on shear modulus of clays, ” Journal of the Geotechnical Engineering Division 102.9, pp. 975-987, 1976.
3. ASTM, “ Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus, ”, 2003.
4. Atkinson, J. H., and Sallfors, G., “ Experimental determination of soil properties, ” Proceedings of the 10 th ECSMFE, Florence, Vol. 3,pp. 915-956, 1991.
5. Balakrishna, S.,Venkatanarayana, B., and Ramana, Y. V. “ Geotechnical investigations at the Kalyani dam site, Chitoor District, Andhra Pradesh, India, ” Engineering Geology, 15(3-4), pp. 205-222, 1980.
6. Bell, F. G., and Culshaw M. G., “ A survey of the geotechnical properties of some relatively weak Triassic sandstones, ” The Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema, Rotterdam. ISBN 90 6191 1672, pp. 139-148, 1993.
7. Bieniawski, Z. T., “ Estimating the strength of rock material, ” J. S. Afr. Inst. Min. Metall., Vol. 74, No. 8, pp. 312-320, 1974.
8. Bieniawski, Z. T., “ Rock mechanics in mining and tunneling, ” Balkema, Boston, pp. 272, 1984.
9. Bonal, J., Donohue, S., and McNally, C., “ Wavelet analysis of bender element signals, ’’ Geotechnique, pp. 243-252, 2012.
10. Casagrande, A., “ The determination of the pre-consolidation load and its practical significance ”, Proceeding of 1st International Conference of soil Mechanics, Vol. 3, pp. 60-64, 1936.
11. Darendeli, M. B., “ Development of a new family of normalized modulus reduction and material damping curves, ” The university of Texas at Austin, 2001.
12. Das, B. M., “ Principles of geotechnical engineering, ’’ Thomson, pp. 141-143, 2007.
13. Deere, D. U., and Miller, R. P., “ Engineering classification and index propertiesof rock, ” Tech. Report Air Force Weapons Lab., New Mexico, pp. 65-116, 1966.
14. Dobereiner, L., and DE Freitas, M. H., “ Geotechnical properties of weak sandstones, ” Geotechnique, Vol. 36, No.1, pp. 79-94, 1986.
15. Dyvik, R., and Madshus, C., “ Lab measurements of Gmax using bender elements, ” Advances in the Art of Testing Soils Under Cyclic Conditions, ASCE, New York, pp. 186-196, 1985.
16. Goodman, R. E., “ Introduction to rock mechanics, ” John Wiley & Sons, Second Edition , New York, U.S.A , 1989.
17. Hoek, E., and Brown, E.T., “ Underground Excavations in Rock ” The Institution of Mining and Metallurgy, London, UK., 1980.
18. Holtz, R. D., and Kovacs W. D., “ An introduction to geotechnical engineering, ” Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
19. ISRM, “ Basic geotechnical description of rock masses, ISRM commission on classification of rocks and rock masses, ” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 85~110, 1981.
20. Johnston, I.W., “ Soft rock engineering, ” Comprehensive Rock Engineering, ED. J. A. Hudson, Vol. 1, pp. 367-393, 1993.
21. Jovicic, V., Coop, M. R., and Simic, M., “ Objective criteria for determining Gmax from bender element tests, ” Geotechnique, 46(2), pp. 357-362, 1996.
22. Kim, Y. S., Tatsuoka, F., and Ochi, K., “ Deformation characteristics at small strains of sedimentary soft rocks by triaxial compression tests, ” Geotechnique, Vol.44-3, pp. 461-478, 1994.
23. Kokusho, T., Yoshida, Y., and Esashi, Y., “ Dynamic properties of soft clay for wide strain range, ” Soils and Foundations, pp. 1-18, 1982.
24. Kramer, S.L., “ Geotechnical Earthquake Engineering, ” Prentice-Hall, Inc., Upper Saddle River, NJ, pp. 653, 1996.
25. Lee, J. S., and Santamarina, J. C., “ Bender elements: performance and signal interpretation, ’’ Journal of geotechnical and geoenvironmental engineering, pp. 1063-1070, 2005.
26. Lin, M. L., and Hung, J. J., “ The influence of moisture content on mechanical properties of some sedimentary rocks in Taiwan, ” Proc. of the 7th Southeast Asian Geotechnical Conference, Taipei, Taiwan, 1982.
27. Luna, R., and Jadi, H., “ Determination of Dynamic Soil Properties Using Geophysical Methods, ” Geophysics 2000, St. Louis, Missouri, 2000.
28. Mesri, G., Rokhsar, A., and Bohor, B. F., “ Composition and compressibility of typical samples of Mexico City clay, ” Geotechnique, pp. 527-554, 1975.
29. Ng, Charles Wang Wai. and Y. Wang. “ Field and laboratory measurements of small strain stiffness of decomposed granites, ” Soils and Foundations, pp. 57-71, 2001.
30. Oliveira, R., “ Weak rock materials, ” The Engineering Geology of Weak Rock, pp. 5-15, 1993.
31. Richart Jr, F. E., “ Dynamic stress-strain relations for soils, state of the art report, ” Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, 1977.
32. Seed, H. B., and Lee, K. L., “ Liquefaction of saturated sands during cyclic loading, ” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
33. Senol, A., “ Determination of Pre-consolidation Pressure, ” Istanbul technical University , The Institute of Science and Technology , Ph.D.Thesis, (In Turkish), Turkey, 1997.
34. Shirley, D.J., and Hampton, L.D., “ Shear wave measurements in laboratory sediments, ” Journal of the Acoustical Society of America, Vol. 63, No. 2, pp. 607-613, 1978.
35. Silver, M.L., “ Load Deformation and Strength Behavior of Soild under Dynamic Loading, ” Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Vol. 3, pp. 873-895, 1981.
36. Skempton, A. W., “ The consolidation of clays by gravitational compaction ”, Quarterly Journal of the Geological Society, Vol. 125, pp. 373-411, 1970.
37. SW-AJA, “ Soil Behavior Under Earthquake Loading Conditions, State of the Art Evaluation of Soil Characteristics for Seismic Response Analyses: Prepared Under Subcontract No. 3354, ’’ Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, 1972.
38. Stoke, K. H. and Lodde, P. F., “ Dynamic response of San Francisco bay mud, ” ASCE Special conference on earthquake engineering and soil dynamics, Pasadena, California, 1978.
39. Sun, J.I., Golesorkhi, R., and Seed, H.B., “ Dynamic Moduli and Damping Ratios for Cohesive Soils, ” Report, UCB/EERC-88/15, University. of California at Berkeley, pp. 48, 1988.
40. Tavenas, F., Des Rosiers, J. P., Leroueil, S., La Rochelle, P., and Roy, M., “ The use of strain energy as a yield and creep criterion for lightly overconsolidated clays, ” Geotechnique, 29(3), pp. 285-303, 1979.
41. Tatsuoka, F., and Kohata, Y., “ Stiffness of hard soils and soft rocks in engineering applications, ” Pre-failure Deformation of Geomaterials, Shibuya, Mitachi and Miura (eds), Balkema, Rotterdam, pp. 947-1061, 1995.
42. Viggiani, G., and Atkinson, J. H., “ Interpretation of bender element tests, ’’ Geotechnique , pp. 149-154, 1995.
43. Vucetic, M., and Dobry, R., “ Effect of Soil Plasticity on Cyclic Response, ” ASCE, Journal of Geotechnical Engineering, Vol. 117, No. 1, pp. 89-107, 1991.
44. Vucetic, M., “ Cyclic Threshold Shear Strains in Soils, ” ASCE, Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228, 1994.
45. Woods, R. D., “ Parameters affecting elastic properties, ” Dynamic method on Soil and Rock Mechanics, Karlsruhe, Germany, Vol. 1, pp.37-60, 1977.
46. Yamamoto, K., Kuwahara, Y., Kato, N., and Hirasawa, T., “ Deformation Rate Analysis: A New Method for In Situ Stress Estimation from Inelastic Deformation of Rock Sample under Uniaxial Compression, ” Tohoku Geophy Journal, Vol. 33, No. 2, pp 127-147, 1990.
47. Yang, Y., and Aplin A. C., “ Definition and practical application of mudstone porosity - effective stress relationships, ” Petroleum Geoscience, Vol. 10, No. 2, pp. 153-162, 2004.
48. Yoshinaka, R., and Yamabe, T., “ Deformation behaviour of soft rocks, ” ISRM International Symposium. International Society for Rock Mechanics and Rock Engineering, 1981.
49. 李德河、許琦, 「台南都會區地質概況」 ,地工技術,第22期,第 40~55 頁,1988。
50. 李德河、紀雲曜、田坤國, 「泥岩基本特性及泥岩邊波之保護措施」 ,地工技術,第48期,第 35~47 頁,1994。
51. 李怡德, 「軟弱砂岩弱化研究」 ,碩士論文,國立台灣大學土木工程研究所,1996。
52. 李德河、楊沂恩、吳建宏、廖正傑、陳柏穎, 「泥岩地區護坡工法研究」 ,地工技術,第117 期,第 35~47 頁,2008。
53. 何春蓀, 「台灣地體構造的演變-台灣地體構造圖說明書」 ,經濟部中央地質調查所,台北,第 39 頁,1982。
54. 宋國城, 「台灣地質圖說明書-恆春半島」 ,經濟部中央地質調查所,台北,77 頁,1991。
55. 周墩堅, 「泥岩與凝灰岩之回脹特性及剪力強度之研究」 ,碩士論文,國立成功大學土木工程研究所,1988。
56. 周仕勳, 「以反覆三軸Ko壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響」 ,碩士論文,國立成功大學土木工程研究所,2014。
57. 林銘郎、林煜卿, 「新竹寶山地區泥質岩石力學性質研究」 ,岩盤工程研討會,新竹,第 139~148 頁,1988。
58. 洪如江, 「初等工程地質學大綱 第五版」 ,財團法人地工技術發展基金會,台北,第 36~38 頁,2017。
59. 陳時祖, 「台灣西南部地區泥岩坡地沖蝕特性之研究(二)」 ,行政院國家科學委員會防災科技報告 74~05 號,1985。
60. 陳文山, 「台灣南部恆春半島之地質」 ,地質,6卷2期,第 21~38 頁,1985。
61. 陳賀瑞, 「中北部地區籍軟弱砂岩之物理與力學性質之初步探討」 ,碩士論文,國立交通大學土木工程研究所,1997。
62. 許琦、林宗曾、張祖恩、鄭志鴻, 「泥岩吸水回脹行為及機制」 ,第八屆大地工程學術研究討論會論文集,第 125~1135 頁,1999。
63. 張竣閔, 「小應變中空扭剪試驗局部變形監測」 ,碩士論文,國立交通大學土木工程系所,2005。
64. 葉季霖, 「軟弱岩石之勁度」 ,碩士論文,國立交通大學土木工程研究所,2003。
65. 謝文元, 「不同溫度、壓力下泥岩之力學行為研究」 ,碩士論文,國立成功大學土木工程研究所,1995。
校內:2026-08-13公開