簡易檢索 / 詳目顯示

研究生: 蘇筱棠
Su, Hsiao-Tang
論文名稱: 氧化鎵系列半導體之紫外光光偵測器
Ga2O3 -based UV Sensor Devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 68
中文關鍵詞: 氧化鎵濺鍍回火光檢測器
外文關鍵詞: Ga2O3, sputter, anneal, responsivity, photodetector, phototransistor
相關次數: 點閱:133下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人主要著重在氧化鎵系列半導體之研製,利用射頻磁控濺鍍的方式沉積以氧化鎵為主要材料的薄膜,並搭配熱退火去改善光檢測器特性。實驗分為三個部分,首先,我們成功製作了以鈦/鋁為電極的氧化鎵光檢測器,在氧氣退火處理後,在高溫下(例:1000℃)可以達到較好的單斜氧化鎵品質。在250nm光照與10V偏壓之下,氧化鎵的截止波長變得較為明顯,元件的部分光特性在退火處理後可以有效改善,這樣的結果說明使用氧化鎵組裝成solar-blind紫外光光檢測器的實用性。
    接著,我們藉由共濺鍍(co-sputter)的方式,在氧化鎵薄膜中參雜不同的半導體化合物,例如參雜氧化銦,可以適當的調整光檢測器的截止波長,例如在較高的銦含量時,截止波長會往長波長位移的現象,並增強光響應。除此之外,我們進一步將元件回火至800oC,其紫外光對可見光的拒斥比可到達五個數量級,進一步證明透過簡易的共濺鍍和熱回火,可以做出品質良好的光檢測器。
    最後,我們將氧化銦鎵用來作為薄膜電晶體(TFT)的通道層,探討不同比例的銦含量,對薄膜電晶體電性的影響,我們發現,隨著銦含量的增加,通道的導電率會增加,且元件的臨界電壓(Vth)會往負值移動,隨後照光,我們發現藉由調變不同的光波長,可控制電晶體的開關,說明氧化銦鎵可進一步應用為光電晶體。

    The main goal of this dissertation is the fabrication and analysis of Ga2O3-based ultraviolet (UV) sensor devices. The Ga2O3 thin film was grown on sapphire substrate by Radio-Frequency Magnetron Sputter technique with thermal annealing treatment to improve the characteristics of the devices. The experiment is divided into three parts:
    First, the Ga2O3 PDs with Ti/Al electrodes are successful fabricated. After the O2 annealing process, the device characters will be effectively improved. The β-Ga2O3 monoclinic phase and better crystalline quality were observed at higher annealing temperature. With an incident light of 250nm and 10V applied bias, the cut-off become sharper. The Ga2O3 PD after O2 annealing treatment at 800oC has the advantages such as low dark current 1.16 × 10-11 (A) and large deep-UV-to-visible rejection ratio. Such a result indicates that it is useful for design of β-Ga2O3 solar-blind UV detectors.
    Second, we describe the preparation of (Ga1_xInx)2O3 films on sapphire substrates by rf magnetron co-sputtering using two ceramic targets of Ga2O3 and In2O3 and post-annealed at various temperature. With the increasing indium content, the threshold wavelength could be adjusted to the longer wavelength. Besides, the device characters will be better after O2 annealing treatment. It was also found that fabricated PD exhibits extremely large deep-UV-to-visible rejection ratio at the optimized condition which In2O3 power was fixed at 25W and post-annealed to 800°C.
    Finally, we used (Ga1_xInx)2O3 films as the channel of thin film transistor and further fabricate the bottom-gate deep-UV sensitive phototransistor. We will discuss the influence of electrical properties due to different indium content. It was found that the conductance increased and the threshold voltage was shift to negative voltage while increasing the indium content. Moreover, there is a significant 100 times increase in the drain current of Ga2O3 TFT upon UV light illumination. We can modulate the light wavelength to control the switching of the transistors. It is concluded that indium gallium oxide TFT can be further used as a promising light photo-detecting device for phototransistor applications.

    摘要..............................................i Abstract..........................................iii Contents..........................................v Tables Captions...................................viii Figures Captions..................................ix Chapter 1 Introduction............................1 1.1 General Background........................1 1.1.1 Ultraviolet Photodetector.................1 1.1.2 The background of Ga2O3-Related Semiconductor and Devices...........................................3 1.2 Organization of the Dissertation..........5 Chapter 2 Theory and Experimental Apparatus.......6 2.1 The theory of Photodetector...............6 2.2 The theory of phototransistor.............8 2.2.1 Principle of operation....................8 2.2.2 Application...............................10 2.3 Experimental Apparatus....................11 2.3.1 RF Sputtering System......................11 2.3.2 X-ray Diffraction (XRD) System............12 2.3.3 Current-Voltage Measurement System........13 Chapter 3 Effect of Thermal Annealing on Ga2O3-Based Solar-Blind Photodetectors Prepared by Radio-Frequency Magnetron Sputter.................................16 3.1 Introduction..............................16 3.2 Experiments...............................17 3.3 Results and Discussion....................18 3.4 Conclusion................................21 Chapter 4 (Ga1-xInx)2O3 thin films prepared by Radio-Frequency Magnetron Cosputter for solar-blind ultraviolet photodetector.....................................26 4.1 Introduction..............................26 4.2 Experiment................................28 4.3 Results and Discussion....................29 4.3.1 Variation of indium oxide RF power........30 4.3.2 Variation of annealing temperature........31 4.4 Conclusions...............................34 Chapter 5 Phototransistors with cosputtered amorphous indium gallium oxide channel......................40 5.1 Introduction..............................40 5.2 Experiment................................42 5.3 Results and Discussion....................43 5.4 Conclusion................................47 Chapter 6 Summary and Future works................54 6.1 Summary...................................54 6.2 Future works..............................57 References........................................58 Reference in Chapter 1............................58 Reference in Chapter 2............................62 Reference in Chapter 3............................63 Reference in Chapter 4............................64 Reference in Chapter 5............................66

    Chapter 1
    [1] A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I.Akasaki, “Demonstration of Flame Detection in Room Light Background by Solar-Blind AlGaN PIN Photodiode”, Phys. Status Solidi A, vol.188, pp.293-296 (2001).
    [2] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys, vol.79, pp.7433-7473(1996).
    [3] P. Glasow, G. Ziegler, W. Suttrop, G. Pensl, and R. Helbig, Proc. SPIE, vol.868, pp.40 (1987)
    [4] J. A. Edmond, H. S. Kong, and C. H. Carter, Jr., “Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC”, Physica B, vol.185, pp.453-460 (1993)
    [5] Y. Hirabayashi, S. Karasawa, K. Kobayashi, S. Misawa, and S. Yoshida,Sens., “Spectral response of a photodiode using 3C-SiC single crystalline film”, Actuators, A, vol.43, pp.164-169 (1994)
    [6] Z. Wu, X. Xin, F. Yan, and J. H. Zhao, “Demonstration of the first 4H-SiC metal-semiconductor-metal ultraviolet photodetector”, Mater. Sci. Forum, vol. 457–460, pp.1491-1494 (2004)
    [7] M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact”, Appl. Phys. Lett., vol. 87, pp.022105 (2005)
    [8] Y. Koide, M. Y. Liao, and J. Alvarez, “Development of Thermally Stable, Solar-Blind Deep-Ultraviolet Diamond Photosensor”, Mater. Trans JIM, vol. 46, pp.1965-1968 (2005)
    [9] M. S. Shur and R. F. Davis, GaN-based Materials and Devices (World Scientific, Singapore, 2004)
    [10] N. Biyikli, O. Aytur, I. Kimukin, T. Tut, and E. Ozbay, “Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity” , Appl. Phys. Lett., vol.81, pp.3272-3274 (2002)
    [11] E. Munoz: Phys., “(Al,In,Ga)N-based photodetectors. Some materials issues”, Status Solidi B, vol.244, pp. 2859-2877 (2007).
    [12] T. Takagi, H. Tanaka, Sz. Fujita, and Sg. Fujita:, “Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (x≃0.5) and Their Application to Solar-Blind Region Photodetectors”, Jpn. J. Appl. Phys, vol.42, pp. L401–L403 (2003)
    [13] K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M.Inoue, and M. Yano: , “Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (1 1 1)-oriented Si substrate toward UV-detector applications”, J. Cryst. Growth, vol.278 , pp. 288-292 (2005)
    [14] M. Liao, Y. Koide, and J. Alvarez:, “Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond”, Appl. Phys. Lett., vol.90, pp. 123507 (2007)
    [15] S.Geller, “Crystal Structure of β-Ga2O3”, J. Chem. Phys. vol.33, pp.676-684 (1960)
    [16] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zidzik, “Ga2O3 films for electronic and optoelectronic applications”, J. Appl. Phys,vol.77, pp.686 (1995)
    [17] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., vol.20, pp.35-44 (2005).
    [18] A. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, Boca Raton, FL, 1998).
    [19] T. Miyata, T. Nakatani, and T. Minami, “Luminescence of free and self-trapped excitons in wide-gap oxides”, J. Lumin., vol.87–89, pp.1183 (2000)
    [20] M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films”, Appl. Phys. Lett., vol.77, pp.4166 (2000).
    [21] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications ” , J. Appl. Phys., vol.77, pp.686-673 (1995).
    [22] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition”, J. Appl. Phys., vol.98, pp.023504 (2005).
    [23] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method”, Mater. Sci. Eng. B, vol.110, pp.34-37 (2004).
    [24] G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, “Chemical vapour deposition and characterization of gallium oxide thin films”, Thin Solid Films, vol.279, pp.115-118 (1996).
    [25] T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors”, Jpn. J. Appl. Phys., vol. 46, pp. 7217–7220 (2007)
    [26] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants”, Sens. Actuators B, vol. 93, pp. 431–434 (2003)
    [27] A. C. Lang, M. Fleischer, and H. Meixner, “Surface modification of Ga2O3 thin film sensors with Rh, Ru and Ir clusters” , Sens. Actuators B, vol. 66, pp. 80–84 (2000)
    [28] Z. Ji, J. Du, J. Fan, and W. Wang, “Gallium oxide films for filter and solar-blind UV detector”, Opt. Mater., vol. 28, pp.415-417 (2006)
    [29] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors ”, Appl. Phys. Lett., vol.90, pp.031912 (2007)
    [30] T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors”, Jpn. J. Appl. Phys., vol.46, pp.7217-7220 (2007)
    [31] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors”, Appl. Phys. Lett., vol.88, pp.153107 (2006)
    [32] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical Solar-Blind Deep-Ultraviolet Schottky Photodetectors Based on β-Ga2O3 Substrates”, Appl. Phys. Express , vol.1, pp. 011202 (2008)
    Chapter 2
    [1] H.-S. Kang, C.-S. Choi, W.-Y. Choi, D.-H. Kim, and K.-W. Seo, “Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors”, Appl. Phys. Lett., vol.84, pp.3780 (2004)
    [2] S. M. Sze, Physics of Semiconductor Devices., pp.744-746 ( Wiley, New York, 1981).
    [3] Campbell J C 1985 Semiconductors and Semimetal vol 22D, ed W T Tsang (New York: Academic)
    [4] Star A, Lu Y, Bradley K andGr¨uner G, “Nanotube Optoelectronic Memory Devices” , Nano Lett., vol.4, pp.1587-1591 (2004)
    [5] Huang Y and Hornsey R I, “Current-mode CMOS image sensor using lateral bipolar phototransistors”, IEEE Trans. Electron Devices, vol.50, pp.2570-2573 (2003)
    [6] Chaji G, Nathan A and Pankhurst Q, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”, Appl. Phys. Lett., vol.93, pp.203504 (2008)

    Chapter 3
    [1] H. H. Tippins, “Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3”, Phys. Rev., vol.140, pp.A316-319 (1965)
    [2] M. Fleischer, L. Höllbauer, and H. Meixner, Sens. Actuators B, vol.18-19, pp.119 (1994)
    [3] T. Minami, H. Yamada, Y. Kubota, and T. Miyata, “Mn-Activated CaO–Ga2O3 Phosphors for Thin-Film Electroluminescent Devices” , Jpn. J. Appl. Phys., Part2 vol.36, pp.L1191-L1194 (1997)
    [4] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals”, Appl. Phys. Lett., vol.70, pp. 3561 (1997)
    [5] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M.Hirano, and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3”, Appl. Phys. Lett., vol.88, pp.092106 (2006)
    [6] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition”, JOURNAL OF APPLIED PHYSICS , vol.98, pp. 023504 (2005)
    [7] M. R. Lorenz, J. F. Woods, and R. J. Gambino, “Some electrical properties of the semiconductor β-Ga2O3”, J. Phys. Chem. Solids, vol.28, pp. 403-404(1967)
    [8] P. Marie*, X. Portier, and J. Cardin, “Growth and characterization of gallium oxide thin films by radiofrequency magnetron sputtering”, phys. stat. sol.(a), vol.205, No.8, pp.1943–1946 (2008)
    [9] Jun Liang Zhao, Xiao Wei Sun, Senior Member, IEEE, Hyukhyun Ryu, and Swee Tiam Tan, “UV and Visible Electroluminescence From a Sn:Ga2O3/n+-Si Heterojunction by Metal–Organic Chemical Vapor Deposition”, IEEE TRANSACTIONS ON ELECTRON DEVICES, vol.58, pp.1447–1451 (2011)
    [10] Zhongshi Liu, Xiping Jing, Lingxuan Wang, “Effects of O2 Partial Pressure and Ga Atmosphere on the Luminescence of Native Defects in β–Ga2O3 Phosphor”, Journal of The Electrochemical Society, vol.154 (6), pp.H440-H443 (2007)
    Chapter 4
    [1] K. Yanagawa, Y. Ohki, T. Omata, H. Hosono, N. Ueda, H. Kawazoe, “Preparation of Cd1−xYxSb2O6 thin film on glass substrate by radio frequency sputtering”, Appl. Phys. Lett., vol.65, pp. 406 (1994).
    [2] D.D. Edwards, T.O. Mason, F. Goutenoire, K.R. Poeppelmeier, “A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system”, Appl. Phys. Lett., vol.70, pp. 1706 (1997).
    [3] A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland, “Optical and structural properties of epitaxial MgxZn1−xO alloys”, Appl. Phys. Lett., vol.75, pp. 3327 (1999).
    [4] T. Minami, Y. Takeda, T. Kakumu, S. Takata, “Preparation of highly transparent and conducting Ga2O3–In2O3 films by direct current magnetron sputtering”, J. Vac. Sci. Technol. A, vol.15, pp.958-962 (1996).
    [5] G.B. Palmer, K.R. Poeppelmeier, “Phase relations, transparency and conductivity in Ga2O3-SnO2-ZnO”, Solid State Sci., vol.4, pp. 317-322 (2002).
    [6] T. Moriga, M. Mikawa, Y. Sakakibara, “Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition”, Thin Solid Films, vol.486, pp.53-57 (2005).
    [7] H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, “Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Appl. Phys. Lett., vol.76, pp.2740 (2000).
    [8] J. Joseph Prince, S. Ramamurthy, B. Subramanian, C. Sanjeeviraja, M. Jayachandran, “Spray pyrolysis growth and material properties of In2O3 films”, J. Cryst. Growth, vol.240, pp.142-151 (2002).
    [9] T.J. Coutts, D.L. Young, X. Li, “Characterization of Transparent Conducting Oxides”, MRS Bull., vol.25, pp.58-65 (2000).
    [10] N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals”, Appl. Phys. Lett., vol.70, pp. 3561 (1997).
    [11] M. Orita, H. Ohta, M. Hirano, H. Hosono,“Deep-ultraviolet transparent conductive β-Ga2O3 thin films”, Appl. Phys. Lett., vol.77, pp. 4166 (2000).
    [12] R. Hill, J. Phys. C:, “Energy-gap variations in semiconductor alloys”, Solid State Phys., vol.7, pp. 521-526(1974).
    [13] B. Potı`, M.T. Todaro, M.C. Frassanito, A. Pomarico, A. Passaseo, M. Lomascolo, R. Cingolani and M. De Vittorio, “High responsivity GaN-based UV detectors”, ELECTRONICS LETTERS, Vol. 39, No. 24(2003)
    [14] Yoshihiro Kokubun, Kasumi Miura, Fumie Endo, and Shinji Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors”, Appl. Phys. Lett., vol.90, pp.031912 (2007)
    [15] M. Fleischer, W. Hanrieder, and H. Meixner, “Stability of semiconducting gallium oxide thin films”, Thin Solid Films, vol.190, pp.93-102(1990)
    [16] G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, “Chemical vapour deposition and characterization of gallium oxide thin film”, Thin Solid Films, vol. 279, pp.115-118 (1996)
    Chapter 5
    [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono,“Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature (London), vol.432, pp.488 (2004)
    [2] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer”, Appl. Phys. Lett., vol.86, pp.013503 (2005)
    [3] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L.Hoffman, C.-H. Park, and D. A. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer”, J. Appl. Phys. vol.97, pp.064505 (2005)
    [4] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples ”, J. Non-Cryst. Solids, vol.198–200, pp.165-169 (1996)
    [5] H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides”, J. Non-Cryst. Solids, vol.203, pp.334-344 (1996)
    [6] S. Narushima, M. O. M. Hirano, and H. Hosono, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2 CdO center dot GeO2”, Phys. Rev. B, vol. 66, pp.035203 (2002)
    [7] R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, and J. F. Wager, “Transparent ring oscillator based on indium gallium oxide thin-film transistors”, Solid-State Electron., vol.50, pp.500 (2006)
    [8] J. Ahman, G. Svensson, and J. Albertsson, “A reinvestigation of beta-gallium oxide”, Acta Crystallogr. C, vol.52, pp.1336-1338 (1996).
    [9] M. Marezio, “REFINEMENT OF CRYSTAL STRUCTURE OF IN2O3 AT 2 WAVELENGTHS”, Acta Crystallogr., vol.20, pp.723 (1966).
    [10] C. Vigreux, L. Binet, D. Gourier, and B. Piriou, “Formation by laser impact of conducting beta-Ga2O3-In2O3 solid solutions with composition gradients”, J. Solid State Chem., vol.157, pp.94-101 (2001)
    [11] D. D. Edwards, P. Folkins, and T. Mason, “Phase equilibria in the Ga2O3-In2O3 system”, J. Am. Ceram. Soc., vol.80, pp.253-257(1997)
    [12] Kosuke Matsuzaki, Hiroshi Yanagi, Toshio Kamiya, Hidenori Hiramatsu, Kenji Nomura, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3”, Appl. Phys. Lett., vol.88, pp.092106 (2006)
    [13] J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent Electronics. New York:Springer,(2008)
    [14] H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, and John F. Wager, “Thin-film transistors with amorphous indium gallium oxide channel layers”, J. Vac. Sci. Technol. B, vol.24(6),pp.2702-2706(2006)

    下載圖示 校內:2014-07-18公開
    校外:2014-07-18公開
    QR CODE