| 研究生: |
王政源 Wang, Cheng-Yuan |
|---|---|
| 論文名稱: |
以移動界面法實現分子梳並應用其發展具標的分子診斷功能之一維奈米感測器 Molecular Combing with Moving Interfaces and Its Use for Developing an Addressable One-Dimensional Nanosensor for Targeted Molecular Diagnostics |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 205 |
| 中文關鍵詞: | DNA分子梳 、移動界面 、一維奈米感測器 、螢光共振能量轉移現象 、光誘導電荷動力學 |
| 外文關鍵詞: | molecular combing, moving interfaces, one-dimensional nanosensor, fluorescence resonance energy transfer, light-induced AC electrokinetics |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討DNA分子梳的形成機理並以此發展具分子探測及功能辨識的一維奈米感測器。此外,我們開發一個新的光電平臺去操控微米粒子。本論文可分成四個部份。
本論文第三章,我們除了驗證在非修飾表面下藉以非特定鍵結也能夠形成DNA分子梳外,並藉以掀基板法及自然蒸發法來探討界面的運動行為是否會影響分子梳的形成。對於掀基板方法來看,我們發現固定在表面及拉伸的DNA數量,親水性基板比疏水性基板來的多。此外,親水性基板的DNA長度也疏水性基板長。為什麼親水性基板DNA分子梳的效率比較好,我們推測可能是因接觸線上的剪應力變化較大且表面速度較快,導致DNA分子有預先拉伸並令DNA在接觸線上有預先集濃的效果。當藉以自然蒸發來形成分子梳來說,我們能直接觀察到單根DNA分子在退去界面上逐漸解糾纏,並隨後形成綿延不斷的DNA分子梳。以此方法來成功形成DNA分子梳,取決於絨球狀DNA分子能侷限於接觸線上累積去進行解糾纏,且因接觸線上的DNA與鄰近的DNA勾黏效應要夠強才不受表面張力梯度的影響,使DNA帶回溶液中。此外,這裡的分子梳不一定需仰賴DNA分子與基板間之特定鍵結來實現,此有別於Bensimon所提的分子梳機制。
本論文第四章,我們設計微流控平臺來操控退水速度,並藉以退水速度來探討速度如何影響分子梳。同時將基板表面修飾有特定官能基,以檢驗特定鍵結對於分子梳的影響。我們發現在某退水速度範圍下,親水性基板的分子梳效率會存在一個局部高峰值,此結果可以歸因於,在退水界面的DNA分子受到兩相互反向作用力的影響:因界面產生向前解糾纏的力與因表面產生向後拖曳的力。當退水速度低時,這兩種作用力會協助DNA分子的延展拉伸及錨定。當退水速度高時,已延展拉伸及錨定於基板表面的DNA分子,會因不再受界面推動的影響,此情形下DNA只受到向後拖曳力的壓縮作用,使之快速的回縮不利於解糾纏。當為疏水性表面時,分子梳效率會存在一個局部高峰值及下降在上升的趨勢,此下降在上升的趨勢是因在退水速度較高時,動態接觸角會由鈍角轉變成銳角所造成的。在此章的結果發現,DNA的分子梳機制應包含,DNA在接觸線上的累積及遠離、DNA藉以移動界面的展開、DNA於基板表面上的鍵結。
本論文第五章,我們應用第四章的實驗架構,藉以官能化量子點奈米膠體粒子共價鍵結在基板已形成分子梳的DNA分子序列上,去實現一維奈米級分子感測器。結合螢光共振能量轉移的技術,我們證明可利用此量子點-DNA分子梳來捕捉目標分子。此感測器未來可應用於分子對接或有結構性的分子裝置,並可用於檢測或傳遞因特定分子間作用所產生的信號。
最後一部份(第六章)我們設計一個光電攝子微流控平臺,並結合光學誘捕與光誘導交流電荷動力的效應,來操控懸浮粒子。我們發現在高頻及低頻下,誘導電荷動力的效應,實際上會阻礙光學誘捕的效應。
In this thesis, we seek a fundamental understanding of molecular combing of DNA as well as to apply it to develop an addressable one-dimensional nanowire for molecular probing and functional recognition. In addition, we develop a new optoelectronic platform for particle manipulation. This thesis consists of four parts.
In Chapter 3, we examine how the interface motion affects the DNA combing on an untreated hydrophilic or hydrophobic substrate to see if DNA molecules can be stretched and immobilized onto the substrate in the absence of specific binding effects. Two methods are employed to conduct the combing: lid lifting and evaporation. For the combing using the lid lifting method, we find that more DNA molecules can be immobilized and stretched on a hydrophilic substrate compared with a hydrophobic substrate. In addition, combed DNA molecules on a hydrophilic substrate than on a hydrophilic surface appear longer than those on a hydrophobic substrate. Why combing is more efficient on a hydrophilic substrate is that the shear stress and the surface velocity on such a substrate is increased in the direction toward the contact line, giving rise to pre-stretching and pre-concentration effects on DNA molecules near the contact line. As for combing driven by evaporation, we are able to directly observe unraveling of single DNA molecule by the retreating interface and successive combing of DNA molecules. A successful combing by this method seems to hinge on if sufficient DNA molecules can be built up at the contact line and on if these DNAs can be confined within the corner to undergo constant unraveling and combing actions without being swept out by the local flow. We also observed that the combing here does not necessarily require specific binding between DNA and the underlying substrate, which is different from the commonly accepted molecular combing mechanism proposed by Bensimon.
In Chapter 4, we put forth to design a microfluidic platform having the ability to adjust the dewetting speed for examining how molecular combing is influenced by the dewetting speed. We also modify the surface with silane groups having different numbers of alkyls to reveal how specific binding and the hydrophicity of a surface play roles in the combing.We find that for a hydrophilic surface, there exists a maximum combing efficiency in the range of the applied dewetting speed. This result can be attributed to two opposite actions produced by the retreating interface on a DNA: forward unraveling by the interface and backward dragging by the surface. At low dewetting speeds, these two effects work to assist in unfolding stretching, and anchoring of DNA molecules. If the dewetting speed is high, the coil end of a stretched and anchored DNA could shrink so fast that the DNA would lose its contact to the interface. In this case, the DNA would only undergo unfavorable compression by the backward dragging. As for a hydrophobic surface, in addition to the maximam mentioned above, the combing efficiency declines and then rises up when the dewetting speed is further increased. The phenomenon could be attributed to the decrease of the dynamic contact angle to an acute angle at a high dewetting speed. The results found in this Chapter suggest that plausible combing mechanisms should include sweeping/trapping of DNA toward/at the contact line, unfolding of DNA by the moving interface, and binding of DNA onto the underlying substrate.
In Chapter 5, we apply our setup in Chapter 4 to prepare an addressable one-dimensional nanosensor by first combing DNA molecules onto a substrate following by conjugating these DNAs with functionalized quantum-dot nanocolloids. With the aid of fluorescence resonance energy transfer (FRET), we demonsrate that targeted molecules can be captured by the prepared quantum-dot-DNA molecular combs. Such a one-dimensional FRET sensor could be applied to molecular docking or developed into a structured molecular device for transfering or detecting signals arising from specific molecular interactions.
In the last part (Chapter 6) of this thesis, we develop a new optoelectronic microfluidic platform for manipulating suspended particles through combined effects of optical trapping and light-induced AC electrokinetics. We find that the optical trapping effect is actually opposed by the induced electrokinetic effects at both low and high frequencies.
Allemand, J. F., Bensimon, D., Jullien, L., Bensimon, A., Croquette, V., Biophysical Journal, 1997, 73, 2064.
Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D., Sci, 1994, 265, 2096.
Bensimon, D., Simon, A., Croquette, V., Bensimon, A., Phy Rev Lett, 1995, 74, 4754.
Chiou, P. Y., Wong, W., Liao, J. C., Wu, M. C., Proc. IEEE MEMS, 2004, pp. 21-24.
Chiou, P. Y., Wong, W., Liao, J. C., Wu, M. C., Proc. IEEE MEMS, 2003, pp. 08-09.
Ccilia, A., Petit, P., Carbeck, J. D., Nano Lett, 2003, 3, 1141.
Gueroui, Z., Place, C., Freyssingeas, E., Berge, B., PNAS, 2002, 99, 6005.
Guan, J., Yu, B., Lee, L. J., Adv. Mater, 2007, 19, 1212.
Kim, J. H., Shi, W. X., Larson, R. G., Langmuir, 2007, 23, 755.
Kim, J. H., Dukkipati, V. R., Pang, S. W., Larson, R. G., Nano Lett, 2007, 2, 185
Koota, J., Seuffert, I., Li, H., Lehner, R., Gisler, T., Langmuir, 2007, 23, 9365.
Lim, T. C., Bailey, V., Ho, Y. P., Wang, T. H., Nanotechnology, 2008, 19, 075701.
Lin, C., Ke, Y., Liu, Y., Merting, M., Gu, J., Yan, H.,
Angew Chem Int Ed Engl, 2007, 46, 6089.
Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., Sci, 1997, 277, 1518.
Smith, S. B., Cui, Y., Bustamante, C., Sci, 1996, 271, 795.
Zhang, C. Y., Yeh, H. C., Kuroki, M. T., Wang, T.H., Nature, 2005, 4, 826.
謝書府、施明利、杜炯榮、張家溥、吳傑堂、魏憲鴻,應用輸送現象原理實現『奈升』化學工程之新策略:結合微介觀多重尺度概念之微流控技術,化工
期刊第54卷第五期
林宣甫,藉微米導線及旅波電場產生交流極化效應所引導之動態組裝,碩士論文國立成功大學,2009。
校內:2020-12-31公開