簡易檢索 / 詳目顯示

研究生: 王政源
Wang, Cheng-Yuan
論文名稱: 以移動界面法實現分子梳並應用其發展具標的分子診斷功能之一維奈米感測器
Molecular Combing with Moving Interfaces and Its Use for Developing an Addressable One-Dimensional Nanosensor for Targeted Molecular Diagnostics
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 205
中文關鍵詞: DNA分子梳移動界面一維奈米感測器螢光共振能量轉移現象光誘導電荷動力學
外文關鍵詞: molecular combing, moving interfaces, one-dimensional nanosensor, fluorescence resonance energy transfer, light-induced AC electrokinetics
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討DNA分子梳的形成機理並以此發展具分子探測及功能辨識的一維奈米感測器。此外,我們開發一個新的光電平臺去操控微米粒子。本論文可分成四個部份。
    本論文第三章,我們除了驗證在非修飾表面下藉以非特定鍵結也能夠形成DNA分子梳外,並藉以掀基板法及自然蒸發法來探討界面的運動行為是否會影響分子梳的形成。對於掀基板方法來看,我們發現固定在表面及拉伸的DNA數量,親水性基板比疏水性基板來的多。此外,親水性基板的DNA長度也疏水性基板長。為什麼親水性基板DNA分子梳的效率比較好,我們推測可能是因接觸線上的剪應力變化較大且表面速度較快,導致DNA分子有預先拉伸並令DNA在接觸線上有預先集濃的效果。當藉以自然蒸發來形成分子梳來說,我們能直接觀察到單根DNA分子在退去界面上逐漸解糾纏,並隨後形成綿延不斷的DNA分子梳。以此方法來成功形成DNA分子梳,取決於絨球狀DNA分子能侷限於接觸線上累積去進行解糾纏,且因接觸線上的DNA與鄰近的DNA勾黏效應要夠強才不受表面張力梯度的影響,使DNA帶回溶液中。此外,這裡的分子梳不一定需仰賴DNA分子與基板間之特定鍵結來實現,此有別於Bensimon所提的分子梳機制。
    本論文第四章,我們設計微流控平臺來操控退水速度,並藉以退水速度來探討速度如何影響分子梳。同時將基板表面修飾有特定官能基,以檢驗特定鍵結對於分子梳的影響。我們發現在某退水速度範圍下,親水性基板的分子梳效率會存在一個局部高峰值,此結果可以歸因於,在退水界面的DNA分子受到兩相互反向作用力的影響:因界面產生向前解糾纏的力與因表面產生向後拖曳的力。當退水速度低時,這兩種作用力會協助DNA分子的延展拉伸及錨定。當退水速度高時,已延展拉伸及錨定於基板表面的DNA分子,會因不再受界面推動的影響,此情形下DNA只受到向後拖曳力的壓縮作用,使之快速的回縮不利於解糾纏。當為疏水性表面時,分子梳效率會存在一個局部高峰值及下降在上升的趨勢,此下降在上升的趨勢是因在退水速度較高時,動態接觸角會由鈍角轉變成銳角所造成的。在此章的結果發現,DNA的分子梳機制應包含,DNA在接觸線上的累積及遠離、DNA藉以移動界面的展開、DNA於基板表面上的鍵結。
    本論文第五章,我們應用第四章的實驗架構,藉以官能化量子點奈米膠體粒子共價鍵結在基板已形成分子梳的DNA分子序列上,去實現一維奈米級分子感測器。結合螢光共振能量轉移的技術,我們證明可利用此量子點-DNA分子梳來捕捉目標分子。此感測器未來可應用於分子對接或有結構性的分子裝置,並可用於檢測或傳遞因特定分子間作用所產生的信號。
    最後一部份(第六章)我們設計一個光電攝子微流控平臺,並結合光學誘捕與光誘導交流電荷動力的效應,來操控懸浮粒子。我們發現在高頻及低頻下,誘導電荷動力的效應,實際上會阻礙光學誘捕的效應。

    In this thesis, we seek a fundamental understanding of molecular combing of DNA as well as to apply it to develop an addressable one-dimensional nanowire for molecular probing and functional recognition. In addition, we develop a new optoelectronic platform for particle manipulation. This thesis consists of four parts.
    In Chapter 3, we examine how the interface motion affects the DNA combing on an untreated hydrophilic or hydrophobic substrate to see if DNA molecules can be stretched and immobilized onto the substrate in the absence of specific binding effects. Two methods are employed to conduct the combing: lid lifting and evaporation. For the combing using the lid lifting method, we find that more DNA molecules can be immobilized and stretched on a hydrophilic substrate compared with a hydrophobic substrate. In addition, combed DNA molecules on a hydrophilic substrate than on a hydrophilic surface appear longer than those on a hydrophobic substrate. Why combing is more efficient on a hydrophilic substrate is that the shear stress and the surface velocity on such a substrate is increased in the direction toward the contact line, giving rise to pre-stretching and pre-concentration effects on DNA molecules near the contact line. As for combing driven by evaporation, we are able to directly observe unraveling of single DNA molecule by the retreating interface and successive combing of DNA molecules. A successful combing by this method seems to hinge on if sufficient DNA molecules can be built up at the contact line and on if these DNAs can be confined within the corner to undergo constant unraveling and combing actions without being swept out by the local flow. We also observed that the combing here does not necessarily require specific binding between DNA and the underlying substrate, which is different from the commonly accepted molecular combing mechanism proposed by Bensimon.
    In Chapter 4, we put forth to design a microfluidic platform having the ability to adjust the dewetting speed for examining how molecular combing is influenced by the dewetting speed. We also modify the surface with silane groups having different numbers of alkyls to reveal how specific binding and the hydrophicity of a surface play roles in the combing.We find that for a hydrophilic surface, there exists a maximum combing efficiency in the range of the applied dewetting speed. This result can be attributed to two opposite actions produced by the retreating interface on a DNA: forward unraveling by the interface and backward dragging by the surface. At low dewetting speeds, these two effects work to assist in unfolding stretching, and anchoring of DNA molecules. If the dewetting speed is high, the coil end of a stretched and anchored DNA could shrink so fast that the DNA would lose its contact to the interface. In this case, the DNA would only undergo unfavorable compression by the backward dragging. As for a hydrophobic surface, in addition to the maximam mentioned above, the combing efficiency declines and then rises up when the dewetting speed is further increased. The phenomenon could be attributed to the decrease of the dynamic contact angle to an acute angle at a high dewetting speed. The results found in this Chapter suggest that plausible combing mechanisms should include sweeping/trapping of DNA toward/at the contact line, unfolding of DNA by the moving interface, and binding of DNA onto the underlying substrate.
    In Chapter 5, we apply our setup in Chapter 4 to prepare an addressable one-dimensional nanosensor by first combing DNA molecules onto a substrate following by conjugating these DNAs with functionalized quantum-dot nanocolloids. With the aid of fluorescence resonance energy transfer (FRET), we demonsrate that targeted molecules can be captured by the prepared quantum-dot-DNA molecular combs. Such a one-dimensional FRET sensor could be applied to molecular docking or developed into a structured molecular device for transfering or detecting signals arising from specific molecular interactions.
    In the last part (Chapter 6) of this thesis, we develop a new optoelectronic microfluidic platform for manipulating suspended particles through combined effects of optical trapping and light-induced AC electrokinetics. We find that the optical trapping effect is actually opposed by the induced electrokinetic effects at both low and high frequencies.

    摘要 I Abstract III 誌謝 VI 目錄 VII 表目錄 XV 圖目錄 XVI 符號說明 XLIII 第一章 緒論 1 1.1研究背景 1 1.2 DNA分子結構 2 1.3文獻回顧 3 1.3.1 DNA分子梳之研究 3 1.3.2量子點與FRET技術來實現單分子之奈米感測器 5 1.3.3光電效應誘導出介電泳來操控次微米粒子 6 1.4研究動機 6 第二章 基本原理 19 2.1自組裝現象的原理 19 2.2有機矽烷在矽表面的自組裝單分子膜 20 2.3 DNA解糾纏的最小界面移動速度 21 第三章 藉掀夾板及自然蒸發法探討退水快慢以及基板親疏水性對DNA分子梳 的影響 24 3.1實驗 25 3.1.1 實驗裝置 25 3.1.2 工作溶液 26 3.1.4 實驗步驟 27 3.1.5 實驗相關細節 29 3.1.6 影像處理軟體與拍攝 29 3.2實驗現象觀察與實驗數據整理及歸納 32 3.2.1當兩板夾角角度為45度及90度時以不同掀板速度在親水表面去形DNA 分子梳 32 3.2.2當兩板夾角角度為45度及90度時以不同掀板速度在疏水表面去形成DNA 分子梳 32 3.2.3藉以自然蒸發法在親疏水表面下去形成DNA分子梳 32 3.3實驗結果討論 33 3.3.1親水性基板與疏水性基板之實驗結果比較 33 3.3.2親水性基板 35 3.3.2(a)掀板速度為0.007cm/s且兩板夾角角度為90度、45度之實驗結果比 較 35 3.3.2(b)掀板速度為0.07cm/s且兩板夾角角度為90度、45度之實驗結果比 較 35 3.3.3疏水性基板 36 3.3.3(a)掀板速度為0.007cm/s且兩板夾角角度為90度、45度之實驗結果比 較 36 3.3.3(b)兩板夾角角度為90度且掀板速度在0.07cm/s與0.007cm/s之實驗 結果比較 36 3.3.3(c)掀板速度為0.07cm/s且兩板夾角度為45度及90度之實驗結果比 較 37 3.3.4在自然蒸發法下接觸角角度小於90度、大於90度及等於0度之實驗結果 比較 37 3.3.5在玻璃表面DNA分子有無Spreading效應及界面累積多寡是否會影響分 子梳的形成 38 3.4結論 39 第四章 可調控氣液界面速度來實現DNA分子梳:界面移動速度及表面性質效應 的影響 60 4.1實驗 61 4.1.1微流道裝置 61 4.1.2工作溶液與藥品 62 4.1.3硬體架構 65 4.1.4實驗步驟 65 4.1.5相關實驗細節 67 4.1.6影像處理軟體與拍攝 69 4.2實驗觀測與記錄 70 4.2.1觀測微流道內形成DNA分子梳之記錄方法 70 4.2.2說明測量DNA長度與界面速度之方法 71 4.3實驗結果與討論 73 4.3.1於改質玻璃表面上以不同氣液界面退水速度後形成DNA分子梳之實驗結 果與討論 73 4.3.2以主動式退水法與自然蒸發法所得之結果 79 4.4結論 79 第五章 應用DNA分子梳來實現一維FRET的分子感測器 116 5.1實驗 117 5.1.1螢光共振能量轉移原理 117 5.1.2螢光濾片原理與供受體的選擇 119 5.1.3工作溶液與藥品 121 5.1.4實驗步驟 125 5.1.5相關實驗細節 125 5.2實驗觀測與記錄 126 5.2.1DNA分子梳且結合量子點特性來實現螢光共振能量轉移之觀察 126 5.2.2藉以Youvan方法計算出螢光共振能量轉移的強度大小 127 5.3實驗結果與討論 129 5.3.1藉以供體量子點655,受體為ALEXA647去實現螢光共振能量轉移效應之 結果 129 5.3.2藉以微管道ζ-potential(zeta potential)的量測間接判定BSA是否 覆蓋在矽烷表面上 130 5.3.3將供體改為量子點605並且使用羅氏藥廠之阻礙試劑去優化實驗結果132 5.4結論 133 第六章 結合光學攝子及交流電場操控膠體粒子運動的探討 150 6.1原理 151 6.1.1 光誘導電荷動力學原理 151 6.1.2 介電泳(Dielectrophoresis, DEP) 151 6.1.3 交流電滲流(AC Electro-Osmosis, ACEO) 153 6.1.4 交流電熱(AC electrothermal, ACET) 156 6.2實驗 158 6.2.1 微流道裝置設計 157 6.2.2 工作溶液 158 6.2.3 實驗步驟 158 6.2.4 實驗相關細節 159 6.3二氧化矽粒子受光學攝子與交流電場作用下之聚集現象 159 6.3.1純粹施加交流電場於粒子之運動行為 160 施加電場頻率1MHz 160 施加電場頻率為100kHz 160 施加電場頻率為10kHz 160 施加電場頻率為100Hz 161 6.3.2純粹施加光學攝子去捕捉粒子之運動行為 161 6.3.3施加交流電場並結合光學攝子作用下粒子之運動行為 161 施加電場頻率1MHz 161 施加電場頻率為100kHz 162 施加電場頻率為10kHz 162 6.4影響粒子運動的機制 162 6.4.1純粹施加交流電場 162 6.4.2純粹施加光學攝子去捕捉粒子 163 6.4.3施加交流電場並結合光學攝子 164 6.5結論 166 第七章 結論、未來展望 180 7.1結論 180 7.2未來展望 182 參考文獻 184 附錄A 186 A.1 光罩設計 186 A.2 光微影 (Photolithography) 製程 187 A.2.1 晶片清洗 187 A.2.2 塗佈光阻 (Spin Coat) 187 A.2.3 軟烤 (Soft Bake) 188 A.2.4 曝光 (Exposure) 189 A.2.5 曝後烤 (Post Expose Bake) 190 A.2.6 顯影 (Development) 190 A.2.7 硬烤 (Hard Bake) 191 A.3 微流道製作 192 A.3.1 材料 192 A.3.2 微流道模型製作 192 A.4實驗設備 193 附錄B 200 附錄C 交流電熱速度導証 203 自述 205

    Allemand, J. F., Bensimon, D., Jullien, L., Bensimon, A., Croquette, V., Biophysical Journal, 1997, 73, 2064.
    Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D., Sci, 1994, 265, 2096.
    Bensimon, D., Simon, A., Croquette, V., Bensimon, A., Phy Rev Lett, 1995, 74, 4754.
    Chiou, P. Y., Wong, W., Liao, J. C., Wu, M. C., Proc. IEEE MEMS, 2004, pp. 21-24.
    Chiou, P. Y., Wong, W., Liao, J. C., Wu, M. C., Proc. IEEE MEMS, 2003, pp. 08-09.
    Ccilia, A., Petit, P., Carbeck, J. D., Nano Lett, 2003, 3, 1141.
    Gueroui, Z., Place, C., Freyssingeas, E., Berge, B., PNAS, 2002, 99, 6005.
    Guan, J., Yu, B., Lee, L. J., Adv. Mater, 2007, 19, 1212.
    Kim, J. H., Shi, W. X., Larson, R. G., Langmuir, 2007, 23, 755.
    Kim, J. H., Dukkipati, V. R., Pang, S. W., Larson, R. G., Nano Lett, 2007, 2, 185
    Koota, J., Seuffert, I., Li, H., Lehner, R., Gisler, T., Langmuir, 2007, 23, 9365.
    Lim, T. C., Bailey, V., Ho, Y. P., Wang, T. H., Nanotechnology, 2008, 19, 075701.
    Lin, C., Ke, Y., Liu, Y., Merting, M., Gu, J., Yan, H.,
    Angew Chem Int Ed Engl, 2007, 46, 6089.
    Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., Sci, 1997, 277, 1518.
    Smith, S. B., Cui, Y., Bustamante, C., Sci, 1996, 271, 795.
    Zhang, C. Y., Yeh, H. C., Kuroki, M. T., Wang, T.H., Nature, 2005, 4, 826.
    謝書府、施明利、杜炯榮、張家溥、吳傑堂、魏憲鴻,應用輸送現象原理實現『奈升』化學工程之新策略:結合微介觀多重尺度概念之微流控技術,化工
    期刊第54卷第五期
    林宣甫,藉微米導線及旅波電場產生交流極化效應所引導之動態組裝,碩士論文國立成功大學,2009。

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE