簡易檢索 / 詳目顯示

研究生: 許貿城
Hsu, Mao-Cheng
論文名稱: 拓樸與幾何最佳化於等力輸出撓性機構設計之研究
Topology Optimization and Geometry Optimization for Design of a Constant-Force Compliant Mechanism
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 等力輸出機構撓性機構拓樸最佳化幾何最佳化幾何非線性
外文關鍵詞: constant force mechanism, compliant mechanism, topology optimization, geometry optimization, geometrical nonlinearity
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用拓樸最佳化及幾何最佳化方法來設計等力輸出撓性機構,此機構可在不同的位移輸入條件下,在輸出端維持等力輸出,且不需要額外加裝感測器進行輸出力量控制,此機構可做為自動化過程中的被動式定力控制裝置或是過載保護裝置使用。在等力輸出撓性機構拓樸最佳化理論部分,包含了幾何非線性與材料非線性假設,並使用非線性有限元素法進行分析,本研究使用移動漸近線方法(Method of Moving Asymptotes)來更新設計變數,並在拓樸最佳化流程中加入投射方法,可有效降低灰階元素數量。由於拓樸最佳化結果中的低密度超彈性體元素對於輸出端之輸出特性具有一定影響,但卻不易實際製作,故本研究在拓樸最佳化的低密度區加入彈簧來取代超彈性體之影響,並對此設計進行進一步的幾何最佳化設計。在幾何最佳化理論部份,本研究使用布穀鳥搜尋演算法來更新等力輸出撓性機構之幾何外形。本研究並使用3D列印軟性材料來實際製作等力輸出撓性機構,實驗結果顯示本研究所設計的等力輸出撓性機構於3mm~6mm的位移輸入區間內,具有等力輸出之效果。此外,本研究並將此等力撓性機構安裝於國產電動夾爪上,設計成一個被動式等力輸出撓性夾爪,並將其安裝於國產SCARA機械手臂上進行夾取試驗。根據實驗結果,此設計可以等力夾取不同外形尺寸之脆弱目標物。本設計為一套低成本的被動式等力輸出裝置,可對定位精度不高的自動化系統提供定力輸出與過載保護。

    This study presents an optimal design procedure including topology and geometry optimization methods to design a compliant constant-force mechanism. The compliant constant-force mechanism can generate a nearly constant output force over a range of input displacements without the need of additional sensors for output force control. The numerical optimization problem is treated as an error minimization problem between output and objective forces. Both material and geometric nonlinearities are considered in topology and geometry optimization steps. The method of moving asymptotes is used to update design variables, and a Heaviside based projection method is used to reduce gray elements in topology optimization. Although the element stiffness for grey and void elements after topology optimization are quite small comparing to solid elements, their existence also contributes to the output force characteristic of the synthesized mechanisms. As these low-stiffness elements are not easy to manufacture in physical prototype, a helical compression spring is introduced in the topology optimized constant-force mechanism to account for the effect of low-stiffness elements, and an additional geometry optimization step is utilized to identify the spring constant as well as to fine tune the geometric parameters based on cuckoo search algorithm. The optimized constant-force mechanism is prototyped by 3D printing of thermoplastic elastomer. The results show that the proposed design can generate a nearly constant output force in the input displacement range of 3 to 6mm. The developed constant-force mechanism is installed on a robot arm with an electric gripper for robotic picking and placing application. Test results show the design can be used in handling of size-varied fragile objects. The developed compliant constant-force mechanism is a low-cost design which can be used to provide passive force control and overload protection for automation systems with low positioning accuracy.

    摘要 i ABSTRACT ii INTRODUCTION iii 目錄 xv 表目錄 xviii 圖目錄 xix 符號說明 xxi 第一章 緒論 1 1-1 等力輸出撓性機構介紹 1 1-2 文獻回顧 2 1-2-1 拓樸最佳化文獻回顧 3 1-2-2 幾何最佳化文獻回顧 6 1-2-3 等力輸出機構文獻回顧 8 1-3 研究目的 9 1-4 本文架構 9 第二章 拓樸最佳化理論 11 2-1 前言 11 2-2 幾何非線性結構之最佳化問題 14 2-2-1 非線性結構介紹 14 2-2-2 幾何非線性有限元素法分析 15 2-2-3 等力輸出撓性機構誤差最小化之最佳化問題 18 2-2-4 幾何非線性元素靈敏度分析與超彈性體假設法 20 2-2-5 濾化演算法 24 2-2-6 MMA(Method of Moving Asymptotes)理論 26 2-2-7 投射方法介紹 29 2-3 材料非線性結構之最佳化問題 31 2-3-1 材料非線性模型介紹 31 2-3-2 元素密度與材料模型之關係 33 2-4 本章小結 33 第三章 幾何最佳化理論 35 3-1 前言 35 3-2 幾何最佳化流程 35 3-3 布穀鳥搜尋演算法 36 3-3-1 簡介 37 3-3-2 萊維飛行( ) 37 3-3-3 布穀鳥搜尋演算法流程 39 3-4 幾何最佳化目標函數 41 3-5 本章小結 42 第四章 等力輸出撓性機構設計 44 4-1 前言 44 4-2 等力輸出撓性機構拓樸最佳化設計 44 4-2-1 拓樸最佳化邊界介紹 44 4-2-2 幾何非線性拓樸最佳化結果 45 4-2-3 材料非線性拓樸最佳化結果 49 4-3 等力輸出撓性機構幾何最佳化設計 51 4-3-1 幾何最佳化邊界介紹 51 4-3-2 幾何最佳化結果 55 4-4 本章小結 60 第五章 等力輸出撓性機構實作與驗證 62 5-1 前言 62 5-2 等力輸出撓性機構試做與實驗結果 62 5-2-1 等力輸出撓性機構製作 62 5-2-2 輸出力量量測實驗結果 63 5-3 等力夾爪與實驗結果 66 5-3-1 等力夾爪 67 5-3-2 等力夾爪實驗結果 69 5-4 本章小結 71 第六章 結論與建議 73 6-1 結論 73 6-2 建議 74 參考文獻 76

    [1]上銀科技網頁https://www.hiwin.tw/.
    [2]兆銘弘科技股份有限公司網頁 http://www.rgk-fa.com/.
    [3]台灣氣立股份有限公司網頁http://www.chelic.com/.
    [4]C.-H. Liu, T.-L. Chen, T.-Y. Pai, C.-H. Chiu, W.-G. Peng, and M.-C. Hsu, "Topology Synthesis, Prototype, and Test of an Industrial Robot Gripper with 3D Printed Compliant Fingers for Handling of Fragile Objects," in 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 2018, pp. 189-194.
    [5]A. M. Dollar and R. D. Howe, "Simple, robust autonomous grasping in unstructured environments," in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 4693-4700.
    [6]P. Wang and Q. Xu, "Design and modeling of constant-force mechanisms: A survey," Mechanism and Machine Theory, vol. 119, pp. 1-21, 2018.
    [7]S. Perai, "Methodology of compliant mechanisms and its current developments in applications: a review," American Journal of Applied Sciences, vol. 4, no. 3, pp. 160-167, 2007.
    [8]L. L. Howell, S. P. Magleby, B. M. Olsen, and J. Wiley, Handbook of compliant mechanisms: John Wiley&Sons, 2013.
    [9]M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications. : Springer, 2003.
    [10]A. Milojević, S. Linß, L. Zentner, N. T. Pavlović, N. D. Pavlović, T. Petrović, M. Milošević, and M. Tomić, "Optimal design of adaptive compliant mechanisms with inherent actuators comparing discrete structures with continuum structures incorporating flexure hinges," in 58th Ilmenau Scientific Colloquium, 2014, vol. 3, pp. 1-12.
    [11]邱震華, "拓樸與尺寸最佳化於自適性撓性夾爪機械利益最大化設計之研究," 成功大學機械工程學系碩士論文, 2016.
    [12]M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of Applied Mechanics, vol. 69, no. 9-10, pp. 635-654, 1999.
    [13]M. Y. Wang, S. Chen, X. Wang, and Y. Mei, "Design of multimaterial compliant mechanisms using level-set methods," Journal of Mechanical Design, vol. 127, no. 5, pp. 941-956, 2005.
    [14]S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, "Topology optimization of compliant mechanisms using the homogenization method," International Journal for Numerical Methods in Engineering, vol. 42, no. 3, pp. 535-559, 1998.
    [15]O. Sigmund, "On the design of compliant mechanisms using topology optimization," Journal of Structural Mechanics, vol. 25, no. 4, pp. 493-524, 1997.
    [16]X. Huang and M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications: John Wiley & Sons, 2010.
    [17]O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and multidisciplinary optimization, vol. 21, no. 2, pp. 120-127, 2001.
    [18]K. Svanberg, "The method of moving asymptotes—a new method for structural optimization," International Journal for Numerical Methods in Engineering, vol. 24, no. 2, pp. 359-373, 1987.
    [19]C. B. Pedersen, T. Buhl, and O. Sigmund, "Topology synthesis of large‐displacement compliant mechanisms," International Journal for Numerical Methods in Engineering, vol. 50, no. 12, pp. 2683-2705, 2001.
    [20]Y. Li, "Topology optimization of compliant mechanisms based on the BESO method," RMIT university, 2014.
    [21]C.-H. Liu, G.-F. Huang, C.-H. Chiu, and T.-L. Chen, "Topology and size optimization of an adaptive compliant gripper to maximize the geometric advantage," in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 1145-1150.
    [22]B. Holtzer, "Topology Optimization of Geometrically Nonlinear Structures," Technische Universiteit Delft, 2017.
    [23]T. Buhl, C. B. Pedersen, and O. Sigmund, "Stiffness design of geometrically nonlinear structures using topology optimization," Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 93-104, 2000.
    [24]G. H. Yoon and Y. Y. Kim, "Element connectivity parameterization for topology optimization of geometrically nonlinear structures," International Journal of Solids and Structures, vol. 42, no. 7, pp. 1983-2009, 2005.
    [25]N. P. van Dijk, M. Langelaar, and F. van Keulen, "Element deformation scaling for robust geometrically nonlinear analyses in topology optimization," Structural and Multidisciplinary Optimization, vol. 50, no. 4, pp. 537-560, 2014.
    [26]L. Liu, J. Xing, Q. Yang, and Y. Luo, "Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique," Mathematical Problems in Engineering, vol. 2017, 2017.
    [27]T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 26-27, pp. 3443-3459, 2001.
    [28]M. Y. Wang and S. Wang, "Bilateral filtering for structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 63, no. 13, pp. 1911-1938, 2005.
    [29]J. K. Guest, J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions," International Journal for Numerical Methods in Engineering, vol. 61, no. 2, pp. 238-254, 2004.
    [30]F. Wang, B. S. Lazarov, and O. Sigmund, "On projection methods, convergence and robust formulations in topology optimization," Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767-784, 2011.
    [31]G. N. Vanderplaats, Numerical optimization techniques for engineering design: Vanderplaats Research and Development, Incorporated, 2001.
    [32]A. Kaveh and A. Zolghadr, "Democratic PSO for truss layout and size optimization with frequency constraints," Computers & Structures, vol. 130, pp. 10-21, 2014.
    [33]C. K. Soh and J. Yang, "Fuzzy controlled genetic algorithm search for shape optimization," Journal of Computing in Civil Engineering, vol. 10, no. 2, pp. 143-150, 1996.
    [34]E. Kita and H. Tanie, "Shape optimization of continuum structures by genetic algorithm and boundary element method," Engineering Analysis with Boundary Elements, vol. 19, no. 2, pp. 129-136, 1997.
    [35]G.-C. Luh and C.-Y. Lin, "Optimal design of truss structures using ant algorithm," Structural and Multidisciplinary Optimization, vol. 36, no. 4, pp. 365-379, 2008.
    [36]X.-S. Yang, "Firefly algorithms for multimodal optimization," in International symposium on stochastic algorithms, 2009, pp. 169-178.
    [37]X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009, pp. 210-214.
    [38]Y. Liu, D.-J. Li, D.-p. Yu, J.-g. Miao, and J. Yao, "Design of a curved surface constant force mechanism," Mechanics Based Design of Structures and Machines, vol. 45, no. 2, pp. 160-172, 2017.
    [39]P. Lambert and J. L. Herder, "An adjustable constant force mechanism using pin joints and springs," in New Trends in Mechanism and Machine Science, 2017, pp. 453-461.
    [40]C. Pedersen, N. Fleck, and G. Ananthasuresh, "Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force," Journal of Mechanical Design, vol. 128, no. 5, pp. 1101-1112, 2006.
    [41]J.-Y. Wang and C.-C. Lan, "A constant-force compliant gripper for handling objects of various sizes," Journal of Mechanical Design, vol. 136, no. 7, p. 071008, 2014.
    [42]Y. Liu, Y. Zhang, and Q. Xu, "Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 476-486, 2016.
    [43]陳大倫, "拓樸最佳化於等力輸出撓性夾爪設計之研究," 成功大學機械工程學系碩士論文, 2018.
    [44]Kepler, J., Sensitivity Analysis: The Direct and Adjoint Method. Universitat Linz, 2010.
    [45]P. Martins, R. Natal Jorge, and A. Ferreira, "A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues," Strain, vol. 42, no. 3, pp. 135-147, 2006.
    [46]O. Sigmund and J. Petersson, "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima," Structural optimization, vol. 16, no. 1, pp. 68-75, 1998.
    [47]O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4-5, pp. 401-424, 2007.
    [48]G. H. Yoon, J. Y. Noh, and Y. Kim, "Topology optimization of geometrically nonlinear structures tracing given load-displacement curves," Journal of Mechanics of Materials and Structures, vol. 6, no. 1, pp. 605-625, 2011.
    [49]R. W. Ogden, "Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, no. 1567, pp. 565-584, 1972.
    [50]X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.

    下載圖示 校內:2024-08-21公開
    校外:2024-08-21公開
    QR CODE