簡易檢索 / 詳目顯示

研究生: 趙乙謙
Chao, I-Chein
論文名稱: 預應力與阻尼系統對局部共振薄板之撓曲波帶隙的影響
Effects of prestress and damping on flexural wave band gaps in locally resonant thin plates
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 預應力局部共振薄板撓曲波帶隙偽帶隙
外文關鍵詞: prestress, local resonance, thin plate, flexural band gap, pseudo band gap
相關次數: 點閱:42下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地震來臨時,雷利波於表面能量集中的行為與撓曲板的振動有某些特徵上的相似,近年來,在抗震領域中已有眾多學者們針對板中的彈性波傳控制進行研究。在本文中,基於Kirchhoff-Love薄板理論,我們利用薄板的撓曲波傳來模擬半空間表面波傳,主要研究了局部共振薄板中的撓曲波傳遞並且考慮預應力作用於板的影響,局部共振薄板是由週期性排列的質量彈簧阻尼諧振器連接於薄板上所組成,過程中以平面波展開法來處理這種二維週期性結構的問題,透過諧振器和預應力的參數變化來分析對頻帶結構的影響,討論帶隙的衰減程度、位置以及寬度。文獻中表示,週期性結構的帶隙是頻帶結構之間阻擋波傳遞的頻率範圍,局部共振結構存在著由布拉格散射及局部共振機制所產生的布拉格帶隙與共振帶隙,由於共振帶隙受其諧振器參數控制,透過適當的諧振器參數調配可與布拉格帶隙形成寬偽帶隙,在我們的分析結果中顯示,預應力的施加會導致布拉格頻率的改變,因此我們表示,針對低頻彈性波的傳遞,可以藉由引入預應力行為使帶隙達到低頻的寬偽帶隙來阻擋。

    In this thesis, we are concerned with the control of the propagation of elastic waves in thin plate. Based on Kirchhoff-Love thin plate theory, the propagation of flexural waves in the thin plate is studied. Specifically, we investigate the propagation of flexural waves in a locally resonant thin plate, which is made of a periodic array of mass-spring-damped resonators attached on a thin homogeneous plate. In addition, the effect of prestress is also examined. The plane wave expansion method is used to deal with the plate system with a periodic array of lumped resonant elements. Through numerical analysis based on finite element calculations (MATLAB), the objective of this work is to explore the effects of prestress on band structures and band gaps in locally resonant thin plates. It is found that different values of prestress affect the Bragg frequency. The propagation of low-frequency elastic waves can be blocked by introducing a pre-stress to achieve a low-frequency wide pseudo-gap.

    中文摘要 i Abstract ii 誌謝 xii 目錄 xiv 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1.1 文獻回顧與相關研究 1 1.2 研究動機與目的 5 1.3 論文簡介 6 第二章 地震波與聲子晶體簡介 9 2.1 地震波的傳遞行為與分類 9 2.2 聲子晶體的概念 12 2.2.1 局部共振(Local resonance) 13 2.2.2 布拉格定律(Bragg’s law) 15 2.2.3 布洛赫定理(Bloch’s Theorem) 16 2.2.4 倒晶格(Reciprocal lattice) 17 2.2.5 布里淵區(Brillouin zone) 20 第三章 以薄板撓曲波傳模擬半空間地殼的彈性波傳 23 3.1 薄板模擬之前提假設 23 3.2 Kirchhoff-Love薄板理論與預應力薄板之推導 25 第四章 具有局部共振型聲子晶體之預應力薄板 35 4.1 局部共振預應力薄板模型與控制方程式 35 4.2 局部共振預應力薄板的頻散方程式推導與計算 39 第五章 一維與二維局部共振預應力薄板的分析與探討 47 5.1 一維古典梁撓曲波傳的頻散行為 47 5.1.1 古典梁的頻散曲線與複數波數 48 5.1.2 局部共振古典梁之頻散關係 52 5.1.3 阻尼系統對局部共振古典梁的影響 55 5.1.4 預應力對古典梁頻散曲線的影響 59 5.2 二維薄板撓曲波傳的頻帶結構與帶隙分析 63 5.2.1 諧振器質量與彈簧對薄板帶隙的影響 64 5.2.2 阻尼系統對局部共振薄板帶隙的影響 75 5.2.3 預應力對局部共振薄板帶隙的影響 78 5.2.4 預應力與阻尼系統的討論 90 第六章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 96 參考文獻 99 附錄A: 平面波展開法的計算補充 107

    Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik, 52(7), 555-600.

    Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2014). Experiments on seismic metamaterials: molding surface waves. Physical Review Letters, 112(13), 133901.

    Bragg, W. L. (1913). The Structure of Some Crystals as Indicated by Their Diffraction of X-rays. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 89(610), 248-277.

    Billah, K. Y., & Scanlan, R. H. (1991). Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. American Journal of Physics, 59(2), 118-124.

    Brillouin, L. (1953). Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices (Vol. 2). Dover publications.

    Cao, Y., Hou, Z., & Liu, Y. (2004). Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2-3), 247-253.

    Chen, Y., Hu, G., & Huang, G. (2017). A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. Journal of the Mechanics and Physics of Solids, 105, 179-198.

    Colombi, A., Colquitt, D., Roux, P., Guenneau, S., & Craster, R. V. (2016). A seismic metamaterial: The resonant metawedge. Scientific Reports, 6(1), 1-6.

    Colombi, A., Craster, R. V., Colquitt, D., Achaoui, Y., Guenneau, S., Roux, P., & Rupin, M. (2017). Elastic wave control beyond band-gaps: shaping the flow of waves in plates and half-spaces with subwavelength resonant rods. Frontiers in Mechanical Engineering, 3, 10.

    Colombi, A., Roux, P., Guenneau, S., Gueguen, P., & Craster, R. V. (2016). Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, 6(1), 1-7.

    Colombi, A., Roux, P., Guenneau, S., & Rupin, M. (2015). Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. The Journal of the Acoustical Society of America, 137(4), 1783-1789.

    Colombi, A., Roux, P., & Rupin, M. (2014). Sub-wavelength energy trapping of elastic waves in a metamaterial. The Journal of the Acoustical Society of America, 136(2), EL192-EL198.

    Colquitt, D. J., Brun, M., Gei, M., Movchan, A. B., Movchan, N. V., & Jones, I. S. (2014). Transformation elastodynamics and cloaking for flexural waves. Journal of the Mechanics and Physics of Solids, 72, 131-143.

    Colquitt, D. J., Colombi, A., Craster, R. V., Roux, P., & Guenneau, S. R. L. (2017). Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction. Journal of the Mechanics and Physics of Solids, 99, 379-393.

    Cui, T. J., Smith, D. R., & Liu, R. (2010). Metamaterials (p. 1). Boston, MA, USA:: Springer.

    Du, Q., Zeng, Y., Huang, G., & Yang, H. (2017). Elastic metamaterial-based seismic shield for both Lamb and surface waves. AIP Advances, 7(7), 075015.

    Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials: Physics and Engineering Explorations. John Wiley & Sons.

    Futhazar, G., Parnell, W. J., & Norris, A. N. (2015). Active cloaking of flexural waves in thin plates. Journal of Sound and Vibration, 356, 1-19.

    Geli, L., Bard, P. Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America, 78(1), 42-63.

    Graff, K. F. (1975). Wave Motion in Elastic Solids. Publication of: Oxford University Press.

    Gusev, V. E., & Wright, O. B. (2014). Double-negative flexural acoustic metamaterial. New Journal of Physics, 16(12), 123053.

    Gutenberg, B. (1950). Structure of the Earth's Crust in the Continents. Science, 111(2872), 29-30.

    Hsu, J. C., & Wu, T. T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14), 144303.

    Hsu, J. C. (2011). Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. Journal of Physics D: Applied Physics, 44(5), 055401.

    Huang, H. H., & Sun, C. T. (2011). Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine, 91(6), 981-996.

    Kawada, T., & Scott, R. (2010). History of the Modern Suspension Bridge Solving the Dilemma between Economy and Stiffness . American Society of Civil Engineers.

    Khire, R. A., Dessel, S. V., Messac, A., & Mullur, A. A. (2006). Study of a honeycomb-type rigidified inflatable structure for housing. Journal of Structural Engineering, 132(10), 1664-1672.

    Kittel, C., McEuen, P., & McEuen, P. (1996). Introduction to Solid State Physics (Vol. 8, pp. 105-130). New York: Wiley.

    Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022.

    Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602.

    Li, L. (1996). Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 13(9), 1870-1876.

    Liu, L., & Hussein, M. (2012). Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance. Journal of Applied Mechanics, 79(1), 011003.

    Liu, Y., Ma, Z., & Su, X. (2016). Linear transformation method to control flexural waves in thin plates. The Journal of the Acoustical Society of America, 140(2), 1154-1161.

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally resonant sonic materials. Science, 289(5485), 1734-1736.

    Love, A. E. H. (1888). XVI. The small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society of London. A, 179, 491-546.

    Ma, G., & Sheng, P. (2016). Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2(2), e1501595.

    Mark, J. E. (Ed.). (2007). Physical Properties of Polymers Handbook (Vol. 1076, p. 825). New York: Springer.

    O'Neill, J., Selsil, Ö., McPhedran, R. C., Movchan, A. B., & Movchan, N. V. (2015). Active cloaking of inclusions for flexural waves in thin elastic plates. The Quarterly Journal of Mechanics and Applied Mathematics, 68(3), 263-288.

    Oudich, M., Senesi, M., Assouar, M. B., Ruzenne, M., Sun, J. H., Vincent, B., ... & Wu, T. T. (2011). Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Physical Review B, 84(16), 165136.

    Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.

    Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084.

    Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966.

    Picon, A. (1988). Navier and the introduction of suspension bridges in France. Construction History, 4, 21-34.

    Pozar, D. M. (2011). Microwave Engineering. John Wiley & Sons.

    Reddy, J. N. (Ed.). (1999). Theory and Analysis of Elastic Plates and Shells. CRC Press.

    Rupin, M., Lemoult, F., Lerosey, G., & Roux, P. (2014). Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Physical Review Letters, 112(23), 234301.

    Sakoda, K. (2004). Optical Properties of Photonic Crystals (Vol. 80). Springer Science & Business Media.

    Semblat, J. F., Kham, M., Parara, E., Bard, P. Y., Pitilakis, K., Makra, K., & Raptakis, D. (2005). Site effects: basin geometry vs soil layering. Soil Dynamics and Earthquake Engineering, 25(7-10), 529-538.

    Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science, 292(5514), 77-79.

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184.

    Smith, T. L., Rao, K., & Dyer, I. (1986). Attenuation of plate flexural waves by a layer of dynamic absorbers. Noise Control Engineering Journal, 26(2), 56-60.

    Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on elastic cloaking in thin plates. Physical Review Letters, 108(1), 014301.

    Sugino, C., Ruzzene, M., & Erturk, A. (2018). Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures. Journal of the Mechanics and Physics of Solids, 116, 323-333.

    Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. New York: McGraw-Hill.

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Usp. Fiz. Nauk, 92, 517-526.

    Wang, C., Abdul-Rahman, H., Wood, L. C., Mohd-Rahim, F. A., Zainon, N., & Saputri, E. (2015). Defects of tensioned membrane structures in the tropics. Journal of Performance of Constructed Facilities, 29(2), 04014049.

    Xiao, Y., Mace, B. R., Wen, J., & Wen, X. (2011). Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators. Physics Letters A, 375(12), 1485-1491.

    Xiao, Y., Wen, J., & Wen, X. (2012). Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401.

    Yu, D., Liu, Y., Wang, G., Zhao, H., & Qiu, J. (2006). Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics, 100(12), 124901.

    Yu, D., Liu, Y., Zhao, H., Wang, G., & Qiu, J. (2006). Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom. Physical Review B, 73(6), 064301.

    Yu, D., Wen, J., Shen, H., Xiao, Y., & Wen, X. (2012). Propagation of flexural wave in periodic beam on elastic foundations. Physics Letters A, 376(4), 626-630.

    Yu, K., Chen, T., & Wang, X. (2013). Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs. Physica B: Condensed Matter, 416, 12-16.

    Zareei, A., & Alam, M. R. (2017). Broadband cloaking of flexural waves. Physical Review E, 95(6), 063002.

    Zouari, S., Brocail, J., & Génevaux, J. M. (2018). Flexural wave band gaps in metamaterial plates: A numerical and experimental study from infinite to finite models. Journal of Sound and Vibration, 435, 246-263.

    Zouhdi, S., Sihvola, A., & Vinogradov, A. P. (Eds.). (2008). Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Springer Science & Business Media.

    寧彥傑(2016),具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文。

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE