| 研究生: |
葉爾君 Yeh, Er-Chun |
|---|---|
| 論文名稱: |
劇烈天氣與地震之地表垂直電場變化 The Variation of the Vertical Electric Field at Ground associated with Earthquakes and Severe Weather |
| 指導教授: |
陳炳志
Chen, Alfred Bing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 大氣電場 、電場量測儀 、地震前兆 |
| 外文關鍵詞: | Vertical Electric Field, Earthquake Precursor, Precipitation, Field Mill |
| 相關次數: | 點閱:148 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣電場在大域電路中扮演了一個很重要的腳色,隨著不同的高度大氣電場值也隨之改變。本篇論文將著重於地表垂直大氣電場量測,並觀察大氣電場與環境因素之關係,同時探討地震前兆是否會對於電場造成擾動。此外,本篇論文也將改裝商用的電場量測儀系統,目的為廣泛的架設電場量測儀並建構出大範圍之電場監視網。
本篇論文購買由Boltek 公司所製作的電場量測儀(EFM-100),此電場量測儀為電流型電場量測儀,設計專為地表電場之量測。其原始之架構需搭配家用電以及電腦來進行數據分析與記錄,因此若要適用於本篇論文之目的,此系統需進行改裝。改裝的重點包含(1)電力系統更換:連接家用電改為太陽能電力系統、(2)處理器更換:將電腦更換為微處理器以降低功耗及體積、(3)資料傳輸介面:從有線之光纖傳輸轉換為4G 無線傳輸、(4)製作全新結構:在較為險惡的戶外環境下保護系統免於風、雨以及日照的破壞。改裝後的電場量測儀系統也放入本團隊設計的電場校正籠與原先之系統進行比較,並將校正數據代入之後的量測結果。
改裝前之系統進行了3 個月的長時間戶外觀測,其目的為驗證購買之儀器可在戶外長時間運作且觀測電場數值之變化,而觀測結果發現電場存在日週期性之變化,推測應為日照所造成。同時也有發現,劇烈的負電場變化主要發生於降雨期間。此次觀測期間發生0206 美濃地震,在地震發生前後,電場有非常態的變化,除去降雨之因素後推測應與地震前兆有關連,但仍需大量的觀測數據與以佐證。
改裝後之系統也分別進行了兩次為期5 天的觀測,目的為驗證新的電場量測儀系統是否能進行穩定且長時間的獨立運作。兩次實驗結果展現出太陽能電力系統能有效延長系統工作時間,電場量測儀也維持穩定的量測且以無線傳輸方式將資料上傳至雲端空間。
Atmospheric electric field plays an important role in the global circuit.In addition to the fair-weather electric field, atmospheric electric field also contains turbulent electric fields which caused by blizzards, sandstorms and volcanic eruptions. Therefore, the observation of the vertical electric field on the surface can be used as an alert indicator of natural disasters to reduce damage and loss. In recent studies, atmospheric electric field is important in the coupling model of the lithosphere-atmosphere-ionosphere system. We also hope to verify the relationship between the earthquake precursor and the electric field by measuring the vertical electric field near the earth’s surface.In order to get a preliminary understanding of the vertical electric field and test the performance of the instrument field mill, we set up the instrument outdoors for long-term measurement tests.It can be observed in the measurement results thatthe vertical electric field is closely related to
precipitation.After further analysis,it was found that the electric field has diurnal variation and interesting signals were observed during the Meinong earthquake (2016/02/06). To further explore the relationship between earthquake precursors and electric fields, it is necessary to select a remote fault zone for a long-term measurement. To make the instrument more suitable for this study, the instrument is modified, including a new microprocessor, a wireless transmission system and a stand-alone power system. The upgraded instrument completed five-day outdoor tests twice and the result confirms this instrument can satisfy the requirements of the design goal.
Allen, R. M., &Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300(5620), 786-789.
Bolt, B. A. (2004). Seismic input motions for nonlinear structural analysis. ISET journal of earthquake technology, 41(2), 223-232.
Davies, K., & Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. Journal of Geophysical Research, 70(9), 2251-2253.
Foppiano, A. J., Ovalle, E. M., Bataille, K., &Stepanova, M. (2008). Ionospheric evidence of the May 1960 earthquake over Concepción?. Geofísicainternacional, 47(3), 179-183.
Geller, R. J. (1997). Earthquake prediction: a critical review. Geophysical Journal International, 131(3), 425-450.
Gish, O. H. (1944). Evaluation and interpretation of the columnar resistance of the atmosphere. Terrestrial Magnetism and Atmospheric Electricity, 49(3), 159-168.
Gish, O. H. (1951). Universal aspects of atmospheric electricity. In Compendium of meteorology (pp. 101-119). American Meteorological Society, Boston, MA.
Harrison, R. G. (2004). Long-term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911–1981. Atmospheric research, 70(1), 1-19.
Karlberg, G. S., Rossmeisl, J., &Nørskov, J. K. (2007). Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Physical Chemistry Chemical Physics, 9(37), 5158-5161.
Krehbiel, P. R. (1986). The electrical structure of thunderstorms. The Earth’s electrical environment, 90-113.
Kubicki, M., Odzimek, A., &Neska, M. (2016). Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe. Atmospheric Research, 178, 329-346.
Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre‐earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics, 116(A10).
Kuo, C. L., Lee, L. C., &Huba, J. D. (2014). An improved coupling model for the lithosphere‐atmosphere‐ionosphere system. Journal of Geophysical Research: Space Physics, 119(4), 3189-3205.
Moore, G. W. (1964). Magnetic disturbances preceding the 1964 Alaska earthquake. Nature, 203(4944), 508.
Pulinets, S., &Ouzounov, D. (2011). Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4-5), 371-382.
Roeder, W. P., Madura, J. T., & Harms, D. E. (2000). Lightning safety for personnel at Cape Canaveral Air Force Station and Kennedy Space Center. In Joint Army Navy NASA Air Force/Safety & Environmental Protection Symposium (pp. 8-12).
Rycroft, M. J., Nicoll, K. A., Aplin, K. L., & Harrison, R. G. (2012). Recent advances in global electric circuit coupling between the space environment and the troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 90, 198-211.
Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake prediction: A physical basis. Science, 181(4102), 803-810.
Singh, D. K., Singh, R. P., &Kamra, A. K. (2004). The electrical environment of the Earth's atmosphere: A review. Space Science Reviews, 113(3), 375-408.
Siingh, D., Singh, R. P., Kamra, A. K., Gupta, P. N., Singh, R., Gopalakrishnan, V., & Singh, A. K. (2005). Review of electromagnetic coupling between the Earth's atmosphere and the space environment. Journal of atmospheric and solar-terrestrial physics, 67(6), 637-658.
Tant, P., Bolsens, B., Sels, T., Van Dommelen, D., Driesen, J., &Belmans, R. (2007). Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 56(4), 1459-1464.
Toutain, J. P., &Baubron, J. C. (1999). Gas geochemistry and seismotectonics: a review. Tectonophysics, 304(1-2), 1-27.
Wåhlin, L. (1986).Atmospheric Electrostatics: Chapter 6 Instrumentation, John Wiley & Sons, Inc., New York.
Wormell, T. W. (1930). Vertical electric currents below thunderstorms and showers. Proc. R. Soc. Lond. A, 127(806), 567-590.
Yu, F., & Turco, R. P. (2001). From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research: Atmospheres, 106(D5), 4797-4814.
Yu, Z., Peng, Z., Liu, P., & Wu, X. (2006). The influence of charged sand particles on the external insulation performance of composite insulators in sandstorm condition. In Properties and applications of Dielectric Materials, 2006. 8th International Conference on (pp. 542-545). IEEE.
何旻潔(2018),「高時間解析度地表導電率量測」,國立成功大學太空天文與電漿科學研究所碩士論文。
邱政修(2012),「使用探空氣球進行大氣直流電場量測」,國立成功大學太空天文與電漿科學研究所碩士論文。
邱泰瑋(2017),「使用探空氣球量測對流雲中的電荷垂直分布」,國立成功大學太空天文與電漿科學研究所碩士論文。
莊嘉文(2014),「發展電場量測儀進行地表大氣電場量測」,國立成功大學太空天文與電漿科學研究所碩士論文。