| 研究生: |
柯淳仁 Ke, Chun-Ren |
|---|---|
| 論文名稱: |
具有極快電子擴散速率和優越光散射效應的新穎介孔洞二氧化鈦球珠應用於低溫可撓式染料敏化太陽能電池 Novel mesoporous TiO2 beads having ultra-fast electron diffusion rates and excellent light scattering effects for use in low temperature flexible dye-sensitized solar cells |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 介孔洞 、二氧化鈦球珠 、可撓式染料敏化太陽能電池 、銳鈦礦 、方向性鍵結 、電子擴散 、光散射 、溶膠凝膠 、水熱 |
| 外文關鍵詞: | mesoporous, TiO2 bead, flexible dye-sensitized solar cell, anatase, oriented attachment, electron diffusion, light scattering, sol-gel, hydrothermal |
| 相關次數: | 點閱:107 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們的研究中,我們率先將介孔洞(mesoporous)二氧化鈦球珠(TiO2 bead)引入低溫可撓式染料敏化太陽能電池(flexible dye-sensitized solar cell)中。二氧化鈦球珠的銳鈦礦(anatase)相和晶粒間方向性鍵結(oriented attachment)的存在,使電子有極快的電子擴散(electron diffusion)速率。此外,具次微米大小的二氧化鈦球珠導致優越的光散射(light scattering)效應。結合上述兩項優點,二氧化鈦球珠被期望用來得到高效率的染料敏化太陽能電池。在我們的努力下,成功得到約5%或超過5%的效率,分別藉由二氧化鈦球珠做為完整的光電極或散射層。與商業用粉末P25來做為比較,P25電池的最佳效率僅達4.3%。
本研究分為兩部分,一為二氧化鈦球珠的特性分析,另一為其應用於可撓式染料敏化太陽能電池,第一部分連結製程參數與二氧化鈦球珠的特性。我們使用新穎的二階段法來製備二氧化鈦球珠,包括溶膠凝膠(sol-gel)法及水熱(hydrothermal)法。在第一階段調整六甲基四胺的含量,在第二階段則調整水熱溫度,以獲得不同結晶性、表面氧空缺濃度及球珠尺寸。我們使用多種分析來評估可撓式染料敏化太陽能電池,包括電化學分析及光學分析。我們率先證實球珠尺寸對電池表現有顯著的影響,尤其是對光收集及電子注入效率。此外,我們證實二氧化鈦球珠的品質像是結晶度及表面氧空缺濃度,會影響電子擴散及存活時間,故得到不同的載子收集效率。因此我們建議使用500奈米尺寸、結晶性佳及氧空缺濃度低的二氧化鈦球珠做為光電極。750奈米的二氧化鈦球珠擁有較多的背向散射,適合做為散射層。總而言之,我們連結各項分析,並且提供獨特的見解以指出嶄新的方向,使添加新穎介孔洞二氧化鈦球珠的可撓式染料敏化電池未來能獲得極高的效率。
In our research, we firstly introduced mesoporous TiO2 beads into low temperature flexible dye-sensitized solar cells (FDSCs). The pure anatase phase of TiO2 beads and the existence of oriented attachment between grains in TiO2 beads enable the ultra-fast electron diffusion rates. Additionally, TiO2 beads with submicron-meter sizes cause excellent light scattering effects. Combining with these two advantages, the high efficiencies are expected by the use of TiO2 beads in DSCs. In our efforts, we successfully obtained the high cell efficiencies around or over 5% by using TiO2 beads as the whole photoanode or scattering layer, respectively. Comparing with commerial P25 powders, the optimum cell efficiency of P25 cell is 4.3%.
This study mainly divided into two parts, one is the characterization for TiO2 beads, another is its applications in FDSCs. The fisrt part correlates preparation parameters with the characteristic of TiO2 beads. We use a novel two-step method to prepare TiO2 beads involving sol-gel process and hydrothermal method. By adjusting the amount of hexamine in fisrt step and the hydrothermal temperature in second step, the TiO2 beads with various crystallinities, suface oxygen vacancy concentrations and sizes are obtained. We used every kind of analyses to evaluate the FDSCs including electrochemical and optical analysis. We fisrtly demonstrated that the sizes of TiO2 beads strongly affect the cell performances, especially for light-harvesting efficiency and electron-injection efficiency. Moreover, we demonstrated that the quality of TiO2 beads like crystallinity and surface oxygen vacancy concentrations affect the electron diffusion time and electon lifetime, resulting in different charge-collection efficiency. Therefore, we suggested that the use of TiO2 beads with 500 nm-sized, better crystallinity and less oxygen vacancies is more proper for photoanodes. The 750 nm-sized TiO2 beads having more back scattering is suitable for use as the scattering layer. To sum up, we correlated various analyses and provided distinctive understanding to indicate a brand-new direction to reach ultrahigh efficiency for FDSCs by using the novel mesoporous TiO2 beads.
[1] N. S. Lewis, "Toward cost-effective solar energy use," Science, 315 (5813), 798-801, 2007.
[2] B. Oregan and M. Grätzel, "A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS," Nature, 353 (6346), 737-740, 1991.
[3] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 31)," Progress in Photovoltaics, 16 (1), 61-67, 2008.
[4] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics, 18 (5), 346-352, 2010.
[5] D. H. Chen, F. Z. Huang, Y. B. Cheng and R. A. Caruso, "Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells," Advanced Materials, 21 (21), 2206-+, 2009.
[6] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, "Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres," Advanced Materials, 21 (36), 3668-+, 2009.
[7] J. Ferber and J. Luther, "Computer simulations of light scattering and absorption in dye-sensitized solar cells," Solar Energy Materials and Solar Cells, 54 (1-4), 265-275, 1998.
[8] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, 127 (48), 16835-16847, 2005.
[9] C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, "Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells," Acs Nano, 3 (10), 3103-3109, 2009.
[10] H. X. Wang, H. Li, B. F. Xue, Z. X. Wang, Q. B. Meng and L. Q. Chen, "Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells," Journal of the American Chemical Society, 127 (17), 6394-6401, 2005.
[11] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, 2 (6), 402-407, 2003.
[12] G. L. Zhang, H. Bala, Y. M. Cheng, D. Shi, X. J. Lv, Q. J. Yu and P. Wang, "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer," Chemical Communications, (16), 2198-2200, 2009.
[13] M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Grätzel, "CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells," Journal of the American Chemical Society, 131 (44), 15976-+, 2009.
[14] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," Journal of Physical Chemistry B, 104 (9), 2053-2059, 2000.
[15] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic Chemistry, 44 (20), 6841-6851, 2005.
[16] P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen, "Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells," Journal of Physical Chemistry B, 110 (39), 19191-19197, 2006.
[17] J. Xia, N. Masaki, K. Jiang and S. Yanagida, "Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells," Journal of Physical Chemistry B, 110 (50), 25222-25228, 2006.
[18] H. Yu, S. Q. Zhang, H. J. Zhao, G. Will and P. R. Liu, "An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells," Electrochimica Acta, 54 (4), 1319-1324, 2009.
[19] K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka and K. C. Ho, "Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer," Journal of Materials Chemistry, 19 (28), 5009-5015, 2009.
[20] A. L. Linsebigler, G. Q. Lu and J. T. Yates, "PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS," Chemical Reviews, 95 (3), 735-758, 1995.
[21] J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku and J. Y. Lai, "Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells," Applied Physics Letters, 90 (21), 2007.
[22] A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin, "ZnO nanotube based dye-sensitized solar cells," Nano Letters, 7 (8), 2183-2187, 2007.
[23] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong and J. X. Wang, "Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode," Applied Physics Letters, 90 (26), 2007.
[24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, "CONVERSION OF LIGHT TO ELECTRICITY BY CIS-X2BIS(2,2'-BIPYRIDYL-4,4'-DICARBOXYLATE)RUTHENIUM(II) CHARGE-TRANSFER SENSITIZERS (X = CL-, BR-, I-, CN-, AND SCN-) ON NANOCRYSTALLINE TIO2 ELECTRODES," Journal of the American Chemical Society, 115 (14), 6382-6390, 1993.
[25] M. K. Nazeeruddin, P. Pechy and M. Grätzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex," Chemical Communications, (18), 1705-1706, 1997.
[26] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel, "Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania," Inorganic Chemistry, 38 (26), 6298-6305, 1999.
[27] P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chemical Communications, (24), 2972-2973, 2002.
[28] S. Ardo and G. J. Meyer, "Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces," Chemical Society Reviews, 38 (1), 115-164, 2009.
[29] A. Mishra, M. K. R. Fischer and P. Bauerle, "Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules," Angewandte Chemie-International Edition, 48 (14), 2474-2499, 2009.
[30] A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, 110 (11), 6595-6663, 2010.
[31] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, "Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine," Journal of Physical Chemistry B, 105 (51), 12809-12815, 2001.
[32] J. H. Wu, S. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin and T. Sato, "A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells," Advanced Functional Materials, 17 (15), 2645-2652, 2007.
[33] G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert and E. Moons, "A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices," Solar Energy Materials and Solar Cells, 76 (1), 85-105, 2003.
[34] K. Tennakone, G. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha and P. M. Sirimanne, "A DYE-SENSITIZED NANO-POROUS SOLID-STATE PHOTOVOLTAIC CELL," Semiconductor Science and Technology, 10 (12), 1689-1693, 1995.
[35] V. P. S. Perera and K. Tennakone, "Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector," Solar Energy Materials and Solar Cells, 79 (2), 249-255, 2003.
[36] B. O'Regan, F. Lenzmann, R. Muis and J. Wienke, "A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: Analysis of pore filling and IV characteristics," Chemistry of Materials, 14 (12), 5023-5029, 2002.
[37] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, 395 (6702), 583-585, 1998.
[38] J. Kruger, R. Plass, M. Grätzel and H. J. Matthieu, "Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 '-dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II)," Applied Physics Letters, 81 (2), 367-369, 2002.
[39] T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, "Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode," Chemistry Letters, (10), 1054-1055, 2001.
[40] B. Li, L. D. Wang, B. N. Kang, P. Wang and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells," Solar Energy Materials and Solar Cells, 90 (5), 549-573, 2006.
[41] Z. Huang, X. H. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li, W. B. Song, L. Q. Chen and Q. B. Meng, "Application of carbon materials as counter electrodes of dye-sensitized solar cells," Electrochemistry Communications, 9 (4), 596-598, 2007.
[42] W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, "Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes," Acs Applied Materials & Interfaces, 1 (6), 1145-1149, 2009.
[43] Q. H. Li, J. H. Wu, Q. W. Tang, Z. Lan, P. J. Li, J. M. Lin and L. Q. Fan, "Application of microporous polyaniline counter electrode for dye-sensitized solar cells," Electrochemistry Communications, 10 (9), 1299-1302, 2008.
[44] T. N. Murakami and M. Grätzel, "Counter electrodes for DSC: Application of functional materials as catalysts," Inorganica Chimica Acta, 361 (3), 572-580, 2008.
[45] Y. Tachibana, K. Hara, K. Sayama and H. Arakawa, "Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells," Chemistry of Materials, 14 (6), 2527-2535, 2002.
[46] M. Grätzel, "Mesoscopic solar cells for electricity and hydrogen production from sunlight," Chemistry Letters, 34 (1), 8-13, 2005.
[47] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," Journal of Physical Chemistry B, 110 (28), 13872-13880, 2006.
[48] J. Bisquert, "Theory of the impedance of electron diffusion and recombination in a thin layer," Journal of Physical Chemistry B, 106 (2), 325-333, 2002.
[49] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, "Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions," Electrochimica Acta, 47 (26), 4213-4225, 2002.
[50] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy," Journal of Physical Chemistry B, 101 (49), 10281-10289, 1997.
[51] P. T. Hsiao, Y. L. Tung and H. S. Teng, "Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, 114 (14), 6762-6769, 2010.
[52] L. M. Peter and K. G. U. Wijayantha, "Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells," Electrochimica Acta, 45 (28), 4543-4551, 2000.
[53] N. G. Park, J. van de Lagemaat and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells," Journal of Physical Chemistry B, 104 (38), 8989-8994, 2000.
[54] A. Zaban, S. T. Aruna, S. Tirosh, B. A. Gregg and Y. Mastai, "The effect of the preparation condition of TiO2 colloids on their surface structures," Journal of Physical Chemistry B, 104 (17), 4130-4133, 2000.
[55] S. Hore, E. Palomares, H. Smit, N. J. Bakker, P. Comte, P. Liska, K. R. Thampi, J. M. Kroon, A. Hinsch and J. R. Durrant, "Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cellst," Journal of Materials Chemistry, 15 (3), 412-418, 2005.
[56] M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Grätzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells," Nano Letters, 5 (9), 1789-1792, 2005.
[57] J. M. Macak, H. Tsuchiya and P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium," Angewandte Chemie-International Edition, 44 (14), 2100-2102, 2005.
[58] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, "Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons," Journal of the American Chemical Society, 130 (40), 13364-13372, 2008.
[59] K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat and C. A. Grimes, "Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye," Nano Letters, 8 (6), 1654-1659, 2008.
[60] C. C. Wang and J. Y. Ying, "Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals," Chemistry of Materials, 11 (11), 3113-3120, 1999.
[61] X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications," Chemical Reviews, 107 (7), 2891-2959, 2007.
[62] G. Oskam, A. Nellore, R. L. Penn and P. C. Searson, "The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio," Journal of Physical Chemistry B, 107 (8), 1734-1738, 2003.
[63] T. Sugimoto, X. P. Zhou and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control," Journal of Colloid and Interface Science, 259 (1), 53-61, 2003.
[64] K. Yanagisawa and J. Ovenstone, "Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature," Journal of Physical Chemistry B, 103 (37), 7781-7787, 1999.
[65] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim and W. I. Lee, "Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films," Chemistry of Materials, 15 (17), 3326-3331, 2003.
[66] H. M. Cheng, J. M. Ma, Z. G. Zhao and L. M. Qi, "HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES," Chemistry of Materials, 7 (4), 663-671, 1995.
[67] Q. Huang and L. Gao, "A simple route for the synthesis of rutile TiO2 nanorods," Chemistry Letters, 32 (7), 638-639, 2003.
[68] Q. H. Zhang, L. A. Gao, J. Sun and S. Zheng, "Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals," Chemistry Letters, (2), 226-227, 2002.
[69] C. C. Tsai and H. S. Teng, "Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment," Chemistry of Materials, 16 (22), 4352-4358, 2004.
[70] C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi and H. J. Seo, "Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant," Journal of Crystal Growth, 257 (3-4), 309-315, 2003.
[71] X. Wang, J. Zhuang, Q. Peng and Y. D. Li, "A general strategy for nanocrystal synthesis," Nature, 437 (7055), 121-124, 2005.
[72] W. Shao, F. Gu, C. Z. Li and M. K. Lu, "Interfacial Confined Formation of Mesoporous Spherical TiO2 Nanostructures with Improved Photoelectric Conversion Efficiency," Inorganic Chemistry, 49 (12), 5453-5459, 2010.
[73] F. Z. Huang, D. H. Chen, X. L. Zhang, R. A. Caruso and Y. B. Cheng, "Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells," Advanced Functional Materials, 20 (8), 1301-1305, 2010.
[74] W. G. Yang, F. R. Wan, Q. W. Chen, J. J. Li and D. S. Xu, "Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells," Journal of Materials Chemistry, 20 (14), 2870-2876, 2010.
[75] S. R. Gajjela, K. Ananthanarayanan, C. Yap, M. Grätzel and P. Balaya, "Synthesis of mesoporous titanium dioxide by soft template based approach: characterization and application in dye-sensitized solar cells," Energy & Environmental Science, 3 (6), 838-845, 2010.
[76] S. H. Jang, Y. J. Kim, H. J. Kim and W. I. Lee, "Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres," Electrochemistry Communications, 12 (10), 1283-1286, 2010.
[77] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist and A. Hagfeldt, "A new method for manufacturing nanostructured electrodes on plastic substrates," Nano Letters, 1 (2), 97-100, 2001.
[78] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, "Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers," Nature Materials, 4 (8), 607-611, 2005.
[79] Y. Kijitori, M. Ikegami and T. Miyasaka, "Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes," Chemistry Letters, 36 (1), 190-191, 2007.
[80] J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee and M. G. Kang, "Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate," Journal of the Electrochemical Society, 155 (7), F145-F149, 2008.
[81] T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, "Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes," Chemical Communications, (45), 4767-4769, 2007.
[82] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, "Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%," Solar Energy Materials and Solar Cells, 94 (5), 812-816, 2010.
[83] T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, 151 (11), A1767-A1773, 2004.
[84] W. J. Wiscombe, "IMPROVED MIE SCATTERING ALGORITHMS," Applied Optics, 19 (9), 1505-1509, 1980.
[85] S. Eiden-Assmann, J. Widoniak and G. Maret, "Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles," Chemistry of Materials, 16 (1), 6-11, 2004.
[86] D. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, "Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm)," Journal of the American Chemical Society, 132 (12), 4438-4444, 2010.
[87] H. Z. Zhang and J. F. Banfield, "Thermodynamic analysis of phase stability of nanocrystalline titania," Journal of Materials Chemistry, 8 (9), 2073-2076, 1998.
[88] J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L. Penn, "Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products," Science, 289 (5480), 751-754, 2000.
[89] M. Lazzeri, A. Vittadini and A. Selloni, "Structure and energetics of stoichiometric TiO2 anatase surfaces (vol 63, art no 155409, 2001)," Physical Review B, 65 (11), 2002.
[90] M. E. Labib and R. Williams, "THE USE OF ZETA-POTENTIAL MEASUREMENTS IN ORGANIC-SOLVENTS TO DETERMINE THE DONOR-ACCEPTOR PROPERTIES OF SOLID-SURFACES," Journal of Colloid and Interface Science, 97 (2), 356-366, 1984.
[91] B. J. Kirby and E. F. Hasselbrink, "Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations," Electrophoresis, 25 (2), 187-202, 2004.
[92] T. Ohsaka, F. Izumi and Y. Fujiki, "RAMAN-SPECTRUM OF ANATASE, TIO2," Journal of Raman Spectroscopy, 7 (6), 321-324, 1978.
[93] S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo and D. Kirin, "Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence," Journal of Raman Spectroscopy, 41 (3), 350-355, 2010.
[94] V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin and B. C. Muddle, "Finite-size and pressure effects on the Raman spectrum nanocrystalline anatse TiO2," Physical Review B, 71 (18), 2005.
[95] D. Bersani, P. P. Lottici and X. Z. Ding, "Phonon confinement effects in the Raman scattering by TiO2 nanocrystals," Applied Physics Letters, 72 (1), 73-75, 1998.
[96] X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole, "Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder," Advanced Functional Materials, 15 (1), 41-49, 2005.
[97] S. O. Kucheyev, T. van Buuren, T. F. Baumann, J. H. Satcher, T. M. Willey, R. W. Meulenberg, T. E. Felter, J. F. Poco, S. A. Gammon and L. J. Terminello, "Electronic structure of titania aerogels from soft x-ray absorption spectroscopy," Physical Review B, 69 (24), 2004.
[98] F. M. F. Degroot, J. Faber, J. J. M. Michiels, M. T. Czyzyk, M. Abbate and J. C. Fuggle, "OXYGEN 1S X-RAY-ABSORPTION OF TETRAVALENT TITANIUM-OXIDES - A COMPARISON WITH SINGLE-PARTICLE CALCULATIONS," Physical Review B, 48 (4), 2074-2080, 1993.
[99] L. Soriano, M. Abbate, J. Vogel, J. C. Fuggle, A. Fernandez, A. R. Gonzalezelipe, M. Sacchi and J. M. Sanz, "CHEMICAL-CHANGES INDUCED BY SPUTTERING IN TIO2 AND SOME SELECTED TITANATES AS OBSERVED BY X-RAY-ABSORPTION SPECTROSCOPY," Surface Science, 290 (3), 427-435, 1993.
[100] V. S. Lusvardi, M. A. Barteau, J. G. Chen, J. Eng, B. Fruhberger and A. Teplyakov, "An NEXAFS investigation of the reduction and reoxidation of TiO2(001)," Surface Science, 397 (1-3), 237-250, 1998.
[101] C. Trapalis, V. Kozhukharov, B. Samuneva and P. Stefanov, "SOL-GEL PROCESSING OF TITANIUM-CONTAINING THIN COATINGS .2. XPS STUDIES," Journal of Materials Science, 28 (5), 1276-1282, 1993.
[102] J. G. Yu, X. J. Zhao and Q. N. Zhao, "Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method," Materials Chemistry and Physics, 69 (1-3), 25-29, 2001.
[103] J. Pouilleau, D. Devilliers, H. Groult and P. Marcus, "Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy," Journal of Materials Science, 32 (21), 5645-5651, 1997.
[104] H. Jensen, A. Soloviev, Z. S. Li and E. G. Sogaard, "XPS and FTIR investigation of the surface properties of different prepared titania nano-powders," Applied Surface Science, 246 (1-3), 239-249, 2005.
[105] P. M. Kumar, S. Badrinarayanan and M. Sastry, "Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states," Thin Solid Films, 358 (1-2), 122-130, 2000.
[106] N. C. Saha and H. G. Tompkins, "TITANIUM NITRIDE OXIDATION CHEMISTRY - AN X-RAY PHOTOELECTRON-SPECTROSCOPY STUDY," Journal of Applied Physics, 72 (7), 3072-3079, 1992.
[107] T. C. Jagadale, S. P. Takale, R. S. Sonawane, H. M. Joshi, S. I. Patil, B. B. Kale and S. B. Ogale, "N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method," Journal of Physical Chemistry C, 112 (37), 14595-14602, 2008.
[108] M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, "Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst," Chemistry of Materials, 17 (25), 6349-6353, 2005.
[109] H. J. Tian, L. H. Hu, C. N. Zhang, W. Q. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng and S. Y. Dai, "Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells," Journal of Physical Chemistry C, 114 (3), 1627-1632, 2010.
[110] J. G. Yu, X. J. Zhao, J. C. Du and W. M. Chen, "Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing," Journal of Sol-Gel Science and Technology, 17 (2), 163-171, 2000.
[111] R. Bleta, P. Alphonse and L. Lorenzato, "Nanoparticle Route for the Preparation in Aqueous Medium of Mesoporous TiO2 with Controlled Porosity and Crystalline Framework," Journal of Physical Chemistry C, 114 (5), 2039-2048, 2010.
[112] C. Deng, P. F. James and P. V. Wright, "Poly(tetraethylene glycol malonate) titanium oxide hybrid materials by sol-gel methods," Journal of Materials Chemistry, 8 (1), 153-159, 1998.
[113] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, "Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells," Journal of Physical Chemistry B, 107 (31), 7759-7767, 2003.
[114] V. Stengl, V. Houskova, S. Bakardjieva and N. Murafa, "Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination," Acs Applied Materials & Interfaces, 2 (2), 575-580, 2010.
[115] J. van de Lagemaat, N. G. Park and A. J. Frank, "Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques," Journal of Physical Chemistry B, 104 (9), 2044-2052, 2000.
[116] D. Vanmaekelbergh and P. E. de Jongh, "Electron transport in disordered semiconductors studied by a small harmonic modulation of the steady state," Physical Review B, 61 (7), 4699-4704, 2000.
[117] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K. G. U. Wijayantha, "Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells," Journal of Physical Chemistry B, 104 (5), 949-958, 2000.
[118] N. W. Duffy, L. M. Peter, R. M. G. Rajapakse and K. G. U. Wijayantha, "Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells," Journal of Physical Chemistry B, 104 (38), 8916-8919, 2000.
[119] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, "Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells," Journal of Physical Chemistry B, 107 (41), 11307-11315, 2003.
[120] A. J. Frank, N. Kopidakis and J. van de Lagemaat, "Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties," Coordination Chemistry Reviews, 248 (13-14), 1165-1179, 2004.
[121] W. Gopel, G. Rocker and R. Feierabend, "INTRINSIC DEFECTS OF TIO2(110) - INTERACTION WITH CHEMISORBED O2, H-2, CO, AND CO2," Physical Review B, 28 (6), 3427-3438, 1983.
[122] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell," Journal of Physical Chemistry B, 107 (34), 8981-8987, 2003.
[123] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, "Controlled electron injection and transport at materials interfaces in dye sensitized solar cells," Materials Science & Engineering R-Reports, 63 (3), 81-99, 2009.
[124] J. J. Lee, G. M. Coia and N. S. Lewis, "Current density versus potential characteristics of dye-sensitized nanostructured semiconductor photoelectrodes. 2. Simulations," Journal of Physical Chemistry B, 108 (17), 5282-5293, 2004.
[125] J. Kruger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, "Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy," Journal of Physical Chemistry B, 107 (31), 7536-7539, 2003.