簡易檢索 / 詳目顯示

研究生: 詹弘任
Chan, Hung-Jen
論文名稱: 利用粒子群優化演算法設計的矽光子彎曲波導
Silicon Waveguide Bends based on Generalized Adaptive Polynomial Window Function by Particle Swarm Optimization
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 彎曲波導絕緣層覆矽光子積體電路粒子群優化演算法(PSO)廣義自適應(GAP)窗函數
外文關鍵詞: Waveguide Bend, Silicon-On-Insulator, Silicon Photonics, Photonic Integrated Circuits, Particle Swarm Optimization, Generalized Adaptive Polynomial Window Function
相關次數: 點閱:167下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光子積體電路中,彎曲波導不可或缺,但在縮小元件尺寸的同時,損耗也會逐漸上升,成為微型化光子元件道路上的絆腳石。於是我們設計出一種基於廣義自適應窗函數(Generalized Adaptive Polynomial Window Function)的彎曲波導模型,能隨著路徑改變寬度的彎曲波導,並透過粒子群優化(Particle Swarm Optimization)演算法運算出在小彎曲半徑(1~3μm)能夠有高效率的彎曲曲線輪廓。
    彎曲波導採用絕緣層覆矽結構 (Silicon-On-Insulator, SOI) ,工作頻段在中心波長1550 nm下,並使用3D-FDTD有限時域差分法進行模擬。在起始彎曲半徑為1μm下,一般傳統彎曲波導傳輸效率約為0.9 / 90°,而我們所設計的彎曲波導穿透係數能提升至0.98 / 90°,波導寬度0.45~0.9845μm不等,在2μm彎曲下也成功將波導穿透係數從0.982 / 90°提升至0.997 / 90°,相較目前最令人熟知的彎曲波導優化-進階彎曲波導(Advanced Bend)也有更好的傳輸表現,但是在彎曲半徑大於3μm下並沒有特別突出的性能表現。

    In photonic integrated circuits, bent waveguides are indispensable. As devices become smaller in size, the issue of increased energy loss becomes important and hinders the miniaturization of photonic components. To solve this problem, we have developed a model of a bent waveguide using the Generalized Adaptive Polynomial window function and utilize the Particle Swarm Optimization algorithm to compute highly efficient bent curves for small bending radii(1~3 μm).
    The waveguide uses the Silicon-On-Insulator (SOI) structure with a central wavelength of 1550 nm and utilizes the 3D-FDTD method in simulations. For radius R=1 μm, the transmission efficiency of traditional bent waveguides is around 0.9 / 90°. However, our designs achieve an improvement in transmittance coefficient of 0.98 / 90°. At R=2 μm, the transmission coefficients improve from 0.982 / 90° to 0.997 / 90°. In comparison to well-known optimized bent waveguide, the Advanced Bend, we can say our design has better performance for smaller bending radii.

    中英文摘要 i INTRODUCTION ii THEORY v DESIGN & SIMULATION vi CONCLUSION xii 致謝 xiii 圖目錄 xv 表目錄 xviii Chapter 1 緒論 1 1.1 論文簡介 1 1.2 論文架構 4 Chapter 2 理論分析 5 2.1 波導介紹 5 2.2 彎曲波導特性及損耗 7 2.3 進階彎曲波導(Advanced Bend) 11 2.4 粒子群優化演算法(PSO) 13 2.5 窗函數 16 Bohman 18 Blackman-Harris 19 Hann 20 Hamming 21 Kaiser 22 Tukey 23 Bartlett 24 2.6 Generalized Adaptive Polynomial (GAP) 窗函數 25 Chapter 3 設計與優化模擬 30 3.1 GAP彎曲波導設計 31 R0=1μm 34 R0=2μm 36 R0=3μm 38 3.2 SG 彎曲 40 R0=1μm 42 R0=2μm 44 R0=3μm 46 3.3 製程考量 48 3.4 模擬結果分析比較 50 Chapter 4 結論 58 附錄 60 Reference 62

    [1] A. Dhiman, "Silicon photonics: a review," IOSR Journal of Applied Physics 3,67-79 (2013).
    [2] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert,J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonicwaveguides in silicon-on-insulator fabricated with CMOS technology," Journal of Lightwave Technology 23, 401 (2005).
    [3] S. K. K. WILLIAM J. MINFORD, AND ROD C. ALFERNESS, "Low -loss TiLiNbO3 waveguide bends λ = 1.3 pm," IEEE Journal of Quantum Electronics QE-18 (1982).
    [4] F. Vogelbacher, S. Nevlacsil, M. Sagmeister, J. Kraft, K. Unterrainer, and R.Hainberger, "Analysis of silicon nitride partial Euler waveguide bends," Optics express 27, 31394-31406 (2019).
    [5] S. Mao, L. Cheng, C. Zhao, F. N. Khan, Q. Li, and H. Y. Fu, "Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks," Applied Sciences 11 (2021).
    [6] L. Zhang, J. Chen, W. Ma, G. Chen, R. Li, W. Li, J. An, J. Zhang, Y. Wang, G.Gou, C. Liu, Z. Qi, and N. Xue, "Low-loss, ultracompact n-adjustable waveguide bends for photonic integrated circuits," Optic Express 31, 2792-2806 (2023).
    [7] D. M.POZAR, Microwave Engineering (John Wiley & Sons, Inc., 2012).
    [8] M. H. LUKAS CHROSTOWSKI, Silicon Photonics Design (Cambridge University Press, 2015).
    [9] S. BEA, and M. Teich, "Fundamentals of photonics," Wiley, 313 (1991).
    [10] R. N. Sheehan, S. Horne, and F. H. Peters, "The design of low-loss curved waveguides," Optical and Quantum Electronics 40, 1211-1218 (2008).
    [11] H. M. W.A.GAMBLING, C.M.RAGDALE, "Curvature and microbending losses in single-mode optical fibres," Optical and Quantum Electronics 11, 43-59 (1979).
    [12] M. Bahadori, M. Nikdast, Q. Cheng, and K. Bergman, "Universal Design of Waveguide Bends in Silicon-on-Insulator Photonics Platform," Journal of Lightwave Technology 37, 3044-3054 (2019).
    [13] T. Kitoh, N. Takato, M. Yasu, and M. Kawachi, "Bending loss reduction in silica-based waveguides by using lateral offsets," Journal of Lightwave Technology 13, 555-562 (1995).
    [14] M. K. Smit, E. C. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical waveguide bends," Journal of Lightwave Technology 11, 1737-1742 (1993).
    [15] J. H. Song, T. D. Kongnyuy, P. De Heyn, S. Lardenois, R. Jansen, and X.Rottenberg, "Low-Loss Waveguide Bends by Advanced Shape for Photonic Integrated Circuits," Journal of Lightwave Technology 38, 3273-3279 (2020).
    [16] P.-H. Fu, C.-Y. Chao, and D.-W. Huang, "Ultracompact Silicon Waveguide Bends Designed Using a Particle Swarm Optimization Algorithm," IEEE Photonics Journal 13, 1-9 (2021).
    [17] 楊再碩, "用於光子積體電路的低損耗彎曲波導," (2022).
    [18] T. Sun, and M. Xia, "Low loss modified Bezier bend waveguide," Optic Express 30, 10293-10305 (2022).
    [19] R. Poli, J. Kennedy, and T. Blackwell, "Particle swarm optimization-An overview. Swarm Intelligence. Volume 1, Issue 1," (Springer, 2007).
    [20] J. Robinson, and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation 52, 397-407 (2004).
    [21] G. Venter, and J. Sobieszczanski-Sobieski, "Particle Swarm Optimization," AIAA Journal 41, 1583-1589 (2003).
    [22] 李維平, 黃郁授, and 戴彰廷, "自適應慣性權重改良粒子群演算法之研究," 資訊科學應用期刊 4, 123-141 (2008).
    [23] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, "Population size in Particle Swarm Optimization," Swarm and Evolutionary Computation 58 (2020).
    [24] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE 66, 51-83 (1978).
    [25] K. M. M. PRABHU, Window Functions and Their Rpplications in Signal Processing (Taylor & Francis Group, 2014).
    [26] A. Kivinukk, and G. Tamberg, "On Blackman-Harris windows for Shannon sampling series," Sampling Theory in Signal and Image Processing 6, 87-108 (2007).
    [27] M. Tabei, T. D. Mast, and R. C. Waag, "Simulation of ultrasonic focus aberration and correction through human tissue," The Journal of the Acoustical Society of America 113, 1166-1176 (2003).
    [28] J. Kaiser, "Nonrecursive digital filter design using the I0-sinh window function, paper presented at Symposium on Circuits and Systems, Inst. of Electr. and Electron," Eng., New York (1974).
    [29] D. S. P. Committee, "IEEE Acoustics, Speech, and Signal Processing Society," Programs for digital signal processing (1979).
    [30] J. F. Justo, and W. Beccaro, "Generalized Adaptive Polynomial Window Function," IEEE Access 8, 187584-187589 (2020).
    [31] P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, and D. Van Thourhout, "Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform," in Silicon Photonics X(SPIE2015), pp. 166-171.
    [32] K. Goudarzi, and M. Lee, "Inverse design of a binary waveguide crossing by the particle swarm optimization algorithm," Results in Physics 34, 105268 (2022).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE