簡易檢索 / 詳目顯示

研究生: 陳愷瀚
Chen, Kai-Han
論文名稱: 圓盤壓電變壓器於超音波馬達低壓驅動之應用
Applications of Disk Type Piezoelectric Transformer in Ultrasonic Motor Low Voltage Drive
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 壓電變壓器超音波馬達
外文關鍵詞: ultrasonic motor, piezoelectric transformer.
相關次數: 點閱:69下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子元件小型化的發展、以及奈米科技的推波助瀾下,微型馬達-尤其超音波馬達的發展越來越重要。然而驅動超音波馬達需要極高的輸入電壓,本研究利用壓電變壓器來提升輸入電壓並驅動超音波馬達。為了探討壓電變壓器以及超音波馬達連結特性,本研究建立壓電變壓器與超音波馬達系統完整動態方塊圖,模擬其連結時的工作頻率偏移及放大倍率。模擬分析的結果與實驗量測的結果做比較,以驗證理論模型之正確性,模擬與實驗結果相當吻合,足以說明本文中理論分析的可靠性。最後本研究成功使用壓電變壓器驅動超音波馬達,也利用比例控制器實現壓電變壓器連結超音波馬達之定位控制。

    Ultrasonic motors are usually operated at a higher AC voltage than conventional function generators. This implies the need of a voltage step-up transformer. In this paper, a piezoelectric transformer is integrated with a USM. However, when a PT and a USM are combined, the PT’s resonance frequency shifts. This paper aims to provide an alternative method to determine the characteristics of a PT and a USM from measurement. A block diagram approach is conducted to analyze the dynamic characteristics of the PT and the USM at their resonance frequencies; thus, the frequency shift and gain of the PT when combined the USM can be easily calculated. The experimental results demonstrate the effectiveness of the proposed method. Finally, we use a proportional control algorithm to realize the PT-USM positioning control.

    摘要 I Extended Abstract II 致謝 XI 目錄 XII 圖目錄 XV 表目錄 XVIII 符號表 XIX 第一章 緒論 1 1.1 前言與研究背景 1 1.2 文獻回顧 4 超音波馬達 4 壓電變壓器 6 壓電變壓器驅動超音波馬達 10 1.3 研究目的 11 1.4 本文架構 11 第二章 壓電理論與有限元素分析 13 2.1 壓電理論 13 正壓電效應 13 逆壓電效應 14 2.2 有限元素分析(Finite Element Method, FEM) 17 有限元素法 17 有限元素分析流程 17 2.3 超音波馬達(Ultrasonic Motor, USM)工作原理 18 超音波馬達工作原理 18 超音波馬達種類 19 2.4 壓電變壓器(Piezoelectric Transformer, PT) 工作原理 22 壓電變壓器工作原理 22 壓電變壓器種類 23 第三章 壓電變壓器與超音波馬達之匹配模擬 25 3.1 壓電變壓器與超音波馬達之匹配 25 3.2 超音波馬達模擬 25 3.3 壓電變壓器模擬 28 第四章 壓電變壓器與超音波馬達之建模分析 31 4.1 壓電變壓器分析 31 壓電變壓器致動端 31 壓電變壓器感應端 33 壓電變壓器分析 34 4.2 壓電變壓器結合超音波馬達 36 第五章 壓電變壓器與超音波馬達模型驗證 41 5.1 實驗設備 41 5.2 模型驗證 44 壓電變壓器模型驗證 44 超音波馬達模型驗證 46 壓電變壓器結合超音波馬達模型驗證 48 最佳放大倍率 48 5.3 超音波馬達定位控制 49 第六章 結論與建議 54 6.1 結論 54 6.2 未來工作 55 參考文獻 56

    [1] ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
    [2] D.A. Henderson, “Simple ceramic motor... inspiring smaller products,” actuator 2006 10th International Conference on New Actuators, Bremen, Germany, June 14–16 2006.
    [3] D.A. Henderson Piezo ceramic motors improve phone camera auto focus and zoom. New Scale Technologies. Available: http://www.NewScaleTech.com
    [4] E.L. Horsley, M.P. Foster, D.A. Stone, “State-of-the-art Piezoelectric Transformer Technology,” Department of Electronic and Electrical Engineering, The University of Sheffield.
    [5] EC28卧式高频变压器厂家_EC28卧式高频变压器价格-高频变压器定制厂家,http://www.gpbianyaqi.com/product/826.html
    [6] H. Allik and J. R. Hughes, “Finite Element for Piezoelectric Vibration,” International Journal Numerical Methods of Engineering, No.2, pp. 151-157, 1970.
    [7] H.W. Kim, S. Dong, P. Laoratanakul, K. Uchino, “Novel Method for Driving the Ultrasonic Motor,” ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 10, pp.1356-1362, october 2002.
    [8] IEEE standard on piezoelectricity, ANSI/IEEE Std. 176-1987
    [9] J. H. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, Jpn. J. Appl. Phys., Part 1 38, 3208 (1999).
    [10] K. T. Chang, H. C. Chiang, and K. S. Lyu, “Effect of electrode layouts on voltage gain characteristics for ring-shaped piezoelectric transformers,” Sensors and Actuators A, 141, 166 (2008).
    [11] L.K. Chang and M.C. Tsai, “Design of single-phase driven screw thread-type ultrasonic motor,” Review of Scientific Instrument 87, 2016.
    [12] L. Longtu, Z. Ningxin, B. Chenyang, C. Xiangcheng, and G. Zhilun, “Multilayer piezoelectric ceramic transformer with low temperature sintering” J. Mater. Sci., 41, 155 (2006).
    [13] Moteurs piézoélectriques. Available: http://lgt.garnier.free.fr/matiere/materiaux/piezo.htm
    [14] O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, and T. Inoue, Proc.-IEEE Ultrason. Symp. 1, 483 (1992).
    [15] P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformers,” Jpn. J. Appl. Phys. 41, 1446 (2002)
    [16] Q. Xu, “Reduced-Voltage, Linear Motor System and Methods Thereof,” US Patent 8,217,553, Jul. 10, 2012.
    [17] S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, A. Fukuoka, T. Inoue, and S. Hirose, Proc.-IEEE Ultrason. Symp. 1, 525 (1994).
    [18] S. Manuspiya , P. Laoratanakul, K. Uchino, “Integration of a piezoelectric transformer and an ultrasonic motor,” Elsevier Science, Ultrasonics 41 (2003) 83–87.
    [19] Squiggle Motors SQL-RV-1.8 SQUIGGLE® Motor, User Manual, New Scale, Revision A, January 2010.
    [20] T. Sashida, “Motor device utilizing ultrasonic oscillation,” US Patent 4,562,374, 16 May 1984.
    [21] T. Sashida, T. Kenjo, “An Introduction to Ultrasonic Motors,” CLARENDON PRESS,OXFORD, 1993.
    [22] Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, and Y. Ino, Jpn. J. Appl. Phys., Part 1 36, 3050 (1997).
    [23] 張廉楷,「新型壓電振動子應用於超音波馬達之研究」,國立成功大學機械工程研究所,博士論文,2016年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE