簡易檢索 / 詳目顯示

研究生: 莊柏亮
Zhuang, Bo-Liang
論文名稱: 針對靜態影像的快速SPIHT編碼系統
A Time Saving Set Partitioning in Hierarchical Trees for Still Image Compression
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 42
中文關鍵詞: 離散小波轉換影像壓縮
外文關鍵詞: Image compression, Discrete wavelet transform
相關次數: 點閱:171下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前以離散小波轉換為基礎的編碼技術中,SPIHT是一套具有很好壓縮效能的演算法。但是他仍然有許多方面可以改善,譬如如何減少記憶體的需求以及改善耗費大量時間這兩個議題。在這篇論文中,為了改善SPIHT本身耗時的這一項缺點,我們從SPIHT延伸出一套快速的編碼系統TSSPIHT,即是在前處理的過程中先針對不同的小波係數的特性對他作以二為底的對數運算,藉由這個動作去縮短編碼中我們所需檢查的位元平面總數。從實驗結果可以看到在低位元率的情況下,我們的編碼時間比傳統的方式快了約4.1~7.7倍;而在其他位元率下我們也快了約1.5~2.7倍,除此之外,我們也提出適合於這套編碼技術的改良式精練演算法,讓我們的方法可以跟SPIHT有相似的壓縮率。此外,由於我們的方式在優先編碼的位元串中保留比傳統SPIHT更多的高頻資訊,因此在低位元率的情況下我們可以得到較好的視覺品質,而在較高位元率的情況下也可以得到較好的影像品質。

    SPIHT (Set Partitioning in Hierarchical Trees) is one of the state-of-the-art coders based on DWT (Discrete Wavelet Transform) and has good performance in image compression. However, it can still be improved in some concepts, such as memory requirement and time consumption. In this thesis, a coding method that follows the natural extension of SPIHT coding scheme for a high speed resolution scalable coding called TSSPIHT (Time Saving SPIHT) is proposed. In order to obtain a considerable speed improvement, this algorithm uses the base 2 logarithm of wavelet coefficients to shorten the checking times of the bit-planes shown by experimental results, the coding speed is 4.1~7.7 times faster than the speed of SPIHT at very low bit rates and 1.5~2.7 times faster at higher bit rates. Besides, the proposed method generates a similar amount of bit counts as the uncoded (i.e., no entropy coded) SPIHT because of the run-length coding method we proposed to transform the bit stream produced from refinement pass. Furthermore, the proposed method also gets better visual quality at very low bit-rates because it has more chances to preserve the detail information than traditional SPIHT in those subbands that different from the LL band.

    Abstract ii List of Figures iv List of Tables v Chapter 1 Introduction 1 Chapter 2 Review of JPEG 2000 4 2.1 Preprocessing 4 2.1.1 Tiling 4 2.1.2 DC level shifting 5 2.1.3 Component transformation 6 2.2. Core processing (DWT) 7 2.3. Quantization 9 2.4. Entropy coding 10 2.4.1 Bit-plane coding 11 2.4.2 Arithmetic coding 12 Chapter 3 Review of SPIHT 13 3.1 Properties of SPIHT 13 3.2 Arithmetic coding of SPIHT symbols 18 Chapter 4 Proposed Method 20 4.1 The preprocessing method 22 4.2 Modified Refinement Pass 28 Chapter 5 Experimental Results 30 Chapter 6 Conclusion and Future Work 40 Reference 41

    [1] F. Khelifi, A. Bouridane, and F. Kurugollu, “Joined spectral trees for scalable SPIHT-based multispectral image compression,” IEEE Transactions on Multimedia, vol. 10, pp. 316-329, April 2008.
    [2] Y. Cho and W. A. Pearlman, “Quantifying the coding performance of zerotrees of wavelet coefficients: degree-k zerotree,” IEEE Transactions on Signal Processing, vol. 55, pp. 2425-2431, June 2007.
    [3] D. Alani, A. Averbuch, and S. Dekel, “Image coding with geometric wavelets," IEEE Transactions on Image Processing, vol. 16, pp. 69-77, January 2007.
    [4] S. H. Yang and P. F. Cheng, “Robust transmission of SPIHT-coded images over packet networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 558-567, May 2007.
    [5] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression without lists,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2047-2050, 2000.
    [6] H. Pan, W. C. Siu, and N. F. Law, “A fast and low memory image coding algorithm based on lifting wavelet transform and modified SPIHT,” Signal Processing:Image Communication, vol. 23, pp. 146-161, March 2008.
    [7] Y. Cho and W. A. Pearlman, “Hierarchical dynamic range coding of wavelet subbands for fast and efficient image decompression,” IEEE Transactions on Image Processing, vol. 16, pp. 2005-2015, August 2007.
    [8] T. Acharya and P. S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architecture, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
    [9] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, vol. 9, pp. 1158–1170, July 2000.
    [10] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243-250, June 1996.
    [11] H. L. Li, G. H. Liu, and Z. Zhang, “Optimization of integer wavelet transforms based on difference correlation structures,” IEEE Transactions on Image Processing, vol. 14, pp. 1831- 1847, November 2005.
    [12] M. Unser and T. Blu, “Mathematical properties of the JPEG2000 wavelet filters,” IEEE Transactions on Image Processing, vol. 12, pp. 1080- 1090, September 2003.
    [13] M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis,” IEEE Transactions on Image Processing, vol. 9, pp. 1010-1024, June 2000.
    [14] W. Berghorn, T. Boskamp, M. Lang, and H. O. Peitgen, “Fast variable run-length coding for embedded progressive wavelet-based image compression,” IEEE Transactions on Image Processing, vol. 10, pp. 1781-1790, 2001.
    [15] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Transactions on Image Processing, vol. 1, pp. 205-220, 1992.
    [16] R. Sudhakar, M. R. karthiga, and S. Jayaraman, “Image compression using coding of wavelet coefficients – A survey,” ICGST International Journal on Graphics, Vision and Image Processing, vol. 5, pp. 25-38, June 2005.
    [17] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-complexity image coding with a set-partitioning embedded block coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 1219-1235, November 2004.
    [18] http://sipi.usc.edu/database/.
    [19] http://myweb.ncku.edu.tw/~p7695117/Tree_by_Yu-Lun_Chien.bmp.

    下載圖示
    2009-07-24公開
    QR CODE