簡易檢索 / 詳目顯示

研究生: 洪紹展
Hong, Shao-Jhan
論文名稱: 出血性大腸桿菌之建模與模擬驗證
Kinetics modeling and simulation verification of Escherichia coli O157:H7
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 92
中文關鍵詞: 大腸桿菌生物化學酵素動力學代謝途徑
外文關鍵詞: Escherichia coli, biochemical, enzyme kinetics, metabolic pathway
相關次數: 點閱:428下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年研究中,對於細胞中主要代謝途徑如醣酵解作用(glycolysis)、檸檬酸循環(tricarboxylic acid cycle)、五碳醣磷酸(pentose phosphate)以及回補途徑(anapleorotic pathway)等建立了數學模型,用以模擬代謝物反應的行為。而這些理論更被用在結核桿菌(Mycobacterium tuberculosis)、盤基網柄菌(Dictyostelium discoideum)、釀酒酵母(Saccharomyces cerevisiae)和大腸桿菌(Escherichia coli)上面進行不同的用途。
    從生化實驗中得知,出血性大腸桿菌(E. coli O157:H7)中檸檬酸循環過程的琥珀酸去氫酶(succinate dehydrogenase)做一突變時,其代謝物反應濃度會有顯著的差異。本論文中我們將針對出血性大腸桿菌提出相對應之數學模型,並基於Matlab在控制、數值領域應用上的便利性建立其模擬環境,如此可以透過數值模擬各代謝物濃度變化來比對實驗數據,驗證模組的可行性,另外使用此模組來預測其他酵素突變的關係。在此所提出的相關參數、模型以及實驗數據實際上都是以體外環境(vivo environment)做討論。

    In the recent years, many efforts have been given to simulate the dynamic behavior of metabolism of a cell using mathematical models for the main metabolic pathways such as glycolysis, tricarboxylic acid cycle (TCA cycle), pentose phosphate (PP) pathway, and the anapleorotic pathways, etc. These models have been applied to the Mycobacterium tuberculosis, Dictyostelium discoideum, Saccharomyces cerevisiae and Escherichia (E.) coli for different verification purposes.
    The significant change of metabolite concentrations as knockout of succinate dehydrogenase on metabolism in TCA cycle of E. coli O157:H7 has been observed from experiments in biochemistry. Here we construct a mathematical model to describe this observation by using the simulation environment of Matlab. A least-square iterative scheme is proposed to tune the kinetic parameters in the model so as to minimize the matching error between the output of the model and the experimental data. The metabolite concentrations computed by the model are compared with the experimental data to verify the feasibility of the proposed model. Based on the same model, we also reveal predictions on new mutants, which are to be confirmed by experiments.

    中文摘要i ABSTRACTii 誌謝iii CONTENTSiv LIST OF TABLE vii LIST OF FIGURES viii NOMENCLATURE x CHAPTER I INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Organizations 5 CHAPTER II BASIC CONCEPTS OF CELLULAR METABOLIC PATHWAY 8 2.1 Glycolysis 9 2.2 TCA cycle 13 2.2.1 TCA cycle 13 2.2.2 Glyoxylate cycle 17 2.3 Pentose Phosphate Pathway 20 CHAPTER III ENZYME KINETICS 24 3.1 Michaelis-Menten Equation 24 3.2 Enzyme Inhibition 27 3.2.1 Competitive Inhibitor 28 3.2.2 Uncompetitive Inhibitor 30 3.2.3 Noncompetitive inhibitor 31 3.3 Kinetics Model in Metabolic Pathway 32 CHAPTER IV EXPERIMENTAL DATA AND SIMULATION VERIFICATION 45 4.1 Experimental Procedure and Measurement 45 4.2 Initial Simulation Based on Parameters from Literature 48 4.3 Refined Simulation Based on Least-Square Algorithm 55 4.4 Prediction on New Mutants 60 CHAPTER V CONCLUSIONS AND FUTURE WORK 63 5.1 Conclusions and Discussion 63 5.2 Future Work 65 References 68 Appendix A 71 Appendix B 82 VITA 92

    [1]Michaelis, L. and Meten, M. L., 1913, “Die Kinetik der Invertinwirkung”, Biochem. Z. 49, pp. 333-369.
    [2]Briggs, G. E. and Haldane, J. B., 1925, “A Note on the Kinetics of Enzyme Action”, Biochem. J. 19, pp. 338-339.
    [3]King, E. L. and Altman, C., 1956, “A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions”, J. Phys. Chem. 60, pp. 1375-1378.
    [4]Chou, T. C., 2012, “Functional Genomic Analysis of the Virulence of Enterohemorrhagic Escherichia coli in Caenorhabditis elegans”, thesis, National Cheng Kung University, Tainan.
    [5]Mogilevskaya, E. A., Lebedeva, G. V., Goryanin, I. I. and Demin, O. V., 2007, “Kinetic model of functioning and regulation of Escherichia coli isocitrate dehydrogenase”, Biophysics 52, pp. 30-39.
    [6]Qi, F., Pradhan, R. K., Dash, R. K. and Beard, D. A., 2011, “Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase ”, Biochemistry 12, pp.53-67.
    [7]Cortassa, S., Aon, M. A., Marbán, E., Winslow, R.L. and O’Rourke, B., 2003, “An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics”, Biophys. J. 84(4), pp. 2734-2755.
    [8]Singh, V. K. and Ghosh, I., 2006, “Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug target”, Theor. Biol. and Med. Model 3, pp. 27-37.
    [9]Mogilevskaya, E. A., Demin, O. V. and Goryanin, I. I., 2006, “Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of sakicylate hepatotoxic effects”, J. Biol. Phys. 32(3-4), pp. 245-271.
    [10]Nazaret, C., Heiske, M., Thurley, K. and Mazat, J. P., 2009, “Mitochondrial energetic metabolism: A simplified model of TCA cycle with ATP production”, Journal of Theoretical Biology 258(3), pp. 455-464.
    [11]Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K. and Reuss, M., 2002, “Dynamic modeling of the central carbon metabolism of Escherichia coli”, Biotech. and Bioeng. 79, pp. 53-73.
    [12]Kadir, T. A. A., Mannan, A. A., Kierzek, A. M., McFadden, J. and Shimizu, K., 2010, “Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification”, Microbial Cell Factories 9, pp. 88-108.
    [13]Alberty, R. A., 1993, “The fundamental equation of thermodynamics for biochemical reaction systems”, Pure & Appl. Chem. 65, pp. 883-888.
    [14]Alberty, R. A., 2006, “Relations between biochemical thermodynamics and biochemical kinetics”, Biophys. Chem. 124(1), pp. 11-17.
    [15]Beard, D. A. and Qian, H., 2008, “Chemical Biophysics: Quantitative Analysis of Cellular Systems”, Cambridge University Press.
    [16]Nelson, D. L. and Cox, M. M., 2000, “Lehninger Principles of Biochemistry, 3rd edition”, Worth Publishers, New York.
    [17]Cook, P. F. and Cleland, W. W., 2007, “Enzyme Kinetics and Mechanism”, Garland Science, New York.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE