| 研究生: |
趙啟翔 Chao, Chi-Hsiang |
|---|---|
| 論文名稱: |
B-Spline有限元素法於二維平面應力問題之研究 The study of B-Spline finite element method on two dimensional plane stress problems |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | B-Spline 、基底函數 、有限元素法 |
| 外文關鍵詞: | B-Spline, finite element method, basis function |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出以B-Spline函數作為有限元素法的基底函數, B-Spline函數可使狀態變數擁有Ck-2的連續性,其中k為B-Spline函數最高階數加一,如此便可以得到更準確的結果。
在一維問題中,將B-Spline函數階數由二階提高至三階,自由度只由原本的n+2提升至n+3,其中n是指元素的個數,而有限元素法則會使自由度由2n+1提升至3n+1。當二維物理問題使用三階多項式分析時,B-Spline有限元素法與有限元素法在自由度上的差異會變為(n+3)2與(3n+1)2,當階數往上增加時自由度上的差別會更大。使用B-Spline有限元素法便能在增加少量自由度的情況下增加階數。
在一維的實例測試中,使用B-Spline有限元素法,可在自由度小於有限元素法時,得到相同的應力精確度,而在自由度相同時,應力的誤差更是下降至有限元素法的十分之一 。而在二維的測試中,B-Spline有限元素法自由度與有限元素法自由度的差異會更加的明顯 。並在加入細切的功能之後,可使用較少的自由度得到更準確的值。如此便可以知道使用B-Spline函數作為基底函數可以大幅降低求解的時間,並可使應力值更為準確。
We use the B-Spline functions as the basis functions in the finite element method. Since the state variables in the B-Spline functions have Ck-2 continuity, where k is the order of the polynomials in the B-Spline functions plus one, we can gain more accurate results in the analysis.
For the B-Spline finite element method used in the one dimensional problem, when the order of the polynomials in the B-Spline functions is increased from second order to third order, the degree of freedom in the analysis will be increased from n+2 to n+3, where n is the number of the elements. However, the degree of freedom for the finite element analysis will be increased from 2n+1 to 3n+1. When the third order polynomials is used to solve the two dimensional problems, the difference in the degree of freedoms between B-Spline finite element method and finite element method will be (n+3)2 and (3n+1)2. As the order of the polynomials increased, the difference in the degree of freedom will be larger and larger. The degree of freedom in the B-Spline finite element analysis can be increased just a small amount when the order of the polynomials is increased.
In one dimensional test example, using B-Spline finite element method can gain the same accuracy of the stress when the degree of freedom is smaller than the degree of freedom in the finite element method. Moreover, when the degree of freedom is the same, the error of the stress decreases to one tenth of finite element method. In two dimensional test examples, the difference in the degree of freedoms between B-Spline finite element method and finite element method will be more obvious. After adding refinement capability, we can gain the better results by using less degree of freedoms. In summary, using B-Spline functions as basis functions can greatly decrease the computer solving time and make the stress value more accurate.
[1] Gardner, L. R. T., Gardner, G. A., Dag, I., “A B-Spline finite element method for the regularized long wave equation”, Communications in numerical methods in engineering, Vol. 11, 59-68, 1995.
[2] Höllig, K., Finite element methods with B-Splines, Society for industrial and applied mathematics, Philadelphia, 2003.
[3] Hikmet, C., Nazan, C. and Khaled, E., “B-Spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems”, Applied mathematics and computation, Vol. 175, 72 - 79, 2006.
[4] Liang, X., Jian, B. and Ni, G., “The B-Spline finite glement method in electromagnetic field numerical analysis”, IEEE transactions on magnetics, Vol. 23, 2641 - 2643, 1987.
[5] Liu, G. R., Mesh free methods: moving beyond the finite element method, CRC press, Boca Raton, 2003.
[6] Ni, G., Xu, X. and Jian, B., “B-Spline finite element method for eddy current field analysis”, IEEE transactions on magnetics, Vol. 26, 723 - 726, 1990.
[7] Reddy, J. N., An introduction to the finite element method, McGraw-Hill, Texas, 2006.
[8] Xiang, J., Chen, X., He, Y. and He, Z., “The construction of plane elastomechanics and Mindlin plate elements of B-Spline wavelet on the interval”, Finite elements in analysis and design, Vol. 42, 1269 - 1280, 2006.
[9] 麥焜燦, 電腦繪圖的數學基礎及應用, 全華科技圖書股份有限公司, 台北市,5-78 - 5-102, 1996.
[10] 廖宏哲, “二維B-Spline有限元素法不規則邊界形狀處理及於平板上的應用”, 國立成功大學機械工程研究所碩士論文, 2007.