簡易檢索 / 詳目顯示

研究生: 黃志雄
Huang, Chih-Hsiung
論文名稱: 重覆化學萃取對含重金屬污泥結合型態及去除效率之影響
指導教授: 高銘木
Kao, Ming-Muh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 127
中文關鍵詞: 連續萃取生物毒性試驗螯合劑重覆化學萃取污泥重金屬
外文關鍵詞: sludge, heavy metal, biotoxicity test, repeated chemical extraction, sequential chemical extraction, EDTA
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內有害重金屬污泥每年產量約41萬公噸,傳統固化、掩埋方式處理已不合時宜,未來勢必朝向污泥資源再利用的方向發展,資源再生技術可分為重金屬與污泥的固定化或分離化兩類。本研究以EDTA重覆化學萃取之方式萃取污泥中之重金屬,並透過連續萃取法討論重金屬之結合型態的變異,最後對處理前後之污泥進行生物毒性試驗。

    實驗用污泥取自皮革與印刷電路板業,重金屬主要存在於鐵錳氧化態與殘留態,碳酸鹽態亦佔有一定的比例,在此兩種污泥中,重金屬的結合型態分佈情況會依不同的類別之污泥而異。

    化學試劑對重金屬的萃取實驗結果顯示,皮革業污泥以配置EDTA莫耳數比例五倍可得最佳之萃取效率,對於主要重金屬鉻而言,萃取效率可達54.39%,而在重覆化學萃取方面,莫耳數比例兩倍以萃取三次可得較佳之效果,其鉻的萃取效率達50.68%,莫耳數比例五倍以萃取兩次為較佳,莫耳數比例十倍時則以萃取兩次為較佳之結果,兩者對鉻的萃取效率則達62%;印刷電路板業污泥之萃取效率結果乃以配置EDTA莫耳數比例兩倍最為可行,對於主要污染重金屬銅其萃取效率達到83%,其在重覆化學萃取方面,以莫耳數比例兩倍而言,其萃取三次效果較好,其它比例的重覆萃取效率均遠較於其為低,其萃取效率達到93.29%。

    在污泥之生物毒性試驗,發現種子之根系長度較發芽率的敏感性為高,在未處理組的污泥,因EC值過高,為抑制種子根系生長的主因。皮革污泥經過化學萃取處理後,有效降低重金屬全量與EC值,導致種子的根系生長情形較未處理組為佳;印刷電路板污泥經過EDTA處理後,因其EC值仍普遍偏高,所以相較於皮革業污泥種子生長情形則較差。

    The production of hazardous heavy metal sludges in Taiwan has reached 410,000 tons per year. Sludge disposal methods of solidification and landfill is irrelevantly, but it must trend to reuse and recycle in the future. This research try to use chemical extraction to remove heavy metals from sludges and evaluate the influence of heavy metal combined forms by sequential chemical extraction on the extracted efficiency. At last, we used the root lengths and seed germinated rate to evaluate the biotoxicity of sludges before and after treatment.

    Sludge sampled from leather and printed circuit board manufacturing industry. Heavy metals in sludges existed as the forms of Fe-Mn oxides fractions and residual fractions mostly, and the carbonate fractions also have stable proportion.
    The results of sequential chemical extraction indicated that heavy metals fractions were significantly different in various kinds of sludge.

    For the chemical extraction experiments, the results showed that the sludges of leather manufacturing industry use the five times of equivalent concentration of EDTA fraction get the better removal efficiency (54.39%).In the repetition of chemical extraction, it could get the best extracted efficiency (62%) in chromium. When we used five times of equivalent concentration of EDTA and repeat-extraction two times. The results of the sludge of printed circuit board manufacturing industry indicated it could get the best extracted efficiency in copper by using two times of equivalent concentration of EDTA and repeat-extraction three times.

    The results of sludge biotoxicity evaluation showed that root elongation was more sensitive than seed germination. The root length growth of raw sludges were inhibited because higher EC values. After chemical extraction treatment, seed germination rate and root length growth in leather sludge were better that was because total metal concentrations and EC values decreased; In the sludges of printed circuit board industry, the seed germination rate and root length growth worse cause by EC values common higher.

    摘要…………………………………………………………………………Ⅰ ABSTRACT……………………………………………………………………Ⅲ 致謝…………………………………………………………………………Ⅴ 目錄…………………………………………………………………………Ⅵ 表目錄………………………………………………………………………Ⅷ 圖目錄……………………………………………………………………ⅩⅠ 第一章 前言…………………………………………………………………1 1-1 研究緣起 ………………………………………………………………1 1-2 研究目的與內容 ………………………………………………………2 第二章 文獻回顧……………………………………………………………4 2-1 污泥之來源與基本性質 ………………………………………………4 2-1-1 污泥之來源 …………………………………………………………4 2-1-2 污泥之基本性質 ……………………………………………………7 2-2 污泥處理技術…………………………………………………………10 2-2-1 污泥脫水技術………………………………………………………10 2-2-2 重金屬處理技術……………………………………………………13 2-3 重金屬溶出技術………………………………………………………16 2-3-1 化學萃取技術………………………………………………………16 2-3-1-1 酸劑萃取…………………………………………………………17 2-3-1-2 螯合劑萃取………………………………………………………19 2-3-2 生物淋洗技術………………………………………………………21 2-4 重金屬與基質結合型態探討…………………………………………24 2-5污泥之生物毒性測試 …………………………………………………32 第三章 實驗設備與方法 …………………………………………………33 3-1 實驗方法與設備………………………………………………………33 3-1-1 實驗設備……………………………………………………………33 3-1-2 實驗材料與藥品……………………………………………………34 3-2 實驗方法與步驟………………………………………………………35 3-2-1 污泥基本理化特性分析……………………………………………36 3-2-2 污泥重金屬等溫化學萃取法實驗…………………………………37 3-2-3 污泥重金屬等溫重覆化學萃取法實驗……………………………37 3-2-4 種子發芽測定實驗…………………………………………………40 第四章 結果與討論 ………………………………………………………41 4-1 污泥基本理化性質與重金屬分析結果………………………………41 4-1-1 污泥基本理化性質分析結果………………………………………41 4-1-2 污泥重金屬分析結果………………………………………………44 4-1-2-1 TCLP分析結果……………………………………………………44 4-1-2-2 重金屬總量萃取分析結果………………………………………45 4-1-2-3 重金屬SCE分析結果 ……………………………………………48 4-2 不同結合型態重金屬對化學萃取效率探討…………………………51 4-2-1 皮革業污泥萃取實驗結果…………………………………………51 4-2-2 印刷電路板業污泥萃取實驗結果…………………………………60 4-3 不同結合型態重金屬對重覆化學萃取效率探討……………………68 4-3-1 皮革業污泥重覆萃取實驗結果……………………………………68 4-3-1-1 兩倍莫耳數之EDTA重覆萃取實驗結果…………………………68 4-3-1-2 五倍莫耳數之EDTA重覆萃取實驗結果…………………………76 4-3-1-3 十倍莫耳數之EDTA重覆萃取實驗結果…………………………83 4-3-2 印刷電路板業污泥重覆萃取實驗結果……………………………90 4-3-2-1 兩倍莫耳數之EDTA重覆萃取實驗結果…………………………90 4-3-2-2 五倍莫耳數之EDTA重覆萃取實驗結果…………………………98 4-3-2-3 十倍莫耳數之EDTA重覆萃取實驗結果………………………105 4-4 污泥生物毒性試驗結果……………………………………………112 第五章 結論與建議 ……………………………………………………116 5-1 結論…………………………………………………………………116 5-2 建議…………………………………………………………………119 參考文獻…………………………………………………………………120 附錄………………………………………………………………………125 自述………………………………………………………………………127

    中興顧問社,「全省工業區污水處理系統功能評估」, 1995

    行政院環境保護署,「廢棄物清理法」,網站名稱 http://www.epa.gov.tw

    行政院環境保護署-環境檢驗所,「廢棄物檢測方法彙 編」,網站名稱 http://www.niea.gov.tw

    江康鈺、王鯤生,「污泥熔融處理及資源再利用技術」, 工業污染防治報導,第64期,第156-187頁,1997

    李清華、王興濬、林昌銘,「以多重毒性特性溶出試驗 (MTCLP)研究廢棄物之長期穩定性」,工業污染防治報導, 第155-169頁,第42期,1992

    李嘉宜、楊萬發,「以酸溶出法回收電鍍污泥中之鉻金 屬」,第十屆廢棄物處理技術研討會論文集,第354-358 頁,1995

    呂慶慧、王壬、楊維鈞,「回收電鍍污泥中有價金屬之研 究」第十屆廢棄物處理技術研討會論文集,第166-169頁, 1995

    巢志成、陳明德、王鑑恆,「污泥之焚化處理技術」,工 業污染防治報導,第64期,第138-155頁,1997

    黃進章、陳俊英,「固化處理操作營運實務」,工業污染 防治報導,第64期,第189-207頁,1997

    經濟部工業局-工業廢棄物共同清除處理計劃,網站名稱 http://proj.moeaidb.gov.tw/iwmct/

    經濟部工業局編印,「金屬工業廢水回收處理技術案例彙 編」,1995

    經濟部工業局編印,「印刷電路板製造業廢棄物資源化案例彙編」,1996

    歐陽橋暉,「下水道工程學」,長松出版社,1995

    簡豪挺,「污泥中重金屬結合型態對化學萃取重金屬效率之影響」,國立成功大學環境工程研究所碩士論文,2002

    Alvarez E. A., Mochon M. C., Sanchez J. C., Ternero R. M., “Heavy metal extractable in sludge from wastewater treatment planes”, Chemosphere, Vol. 47, p.765-775, 2002

    Bernal M. P., Navarro A. F., Sanchez-Monedero M. A., Roig A., and Cegarra J., “Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil”, Soil Biol.
    Biochem, Vol.30, No.3, p.305-313, 1998

    Chmielewski A. G., Urbanski. T. S. and Migdal. W., “Separation technologies for metal recovery from industrial wastes”, Hydrometallurgy, Vol.45, p.333-344, 1997

    Colmer A. R. and Hinkle M. E., Science, Vol.106, p.253, 1947

    Elliott H. A. and Brown G. A., “Comparative evaluation of NTA and EDTA for extractive decontamination of pb-polluted soils”, Water Air and Soil Pollution, Vol.45, p.361-369, 1989

    Gomez A. J. L., Giraldze. I., Sanchez R. D. and Morales. E., “Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments”, Analytica Chimica Acta, Vol.414, p.151-164, 2000

    Hong J. and Pintauro P. N., “Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelator”, Water Air and Soil Pollution, Vol.86, p.35-50, 1996

    Hong J. and Pintauro P. N., “Selective removal of heavy metals from contaminated kaolin by chelator”, Water Air and Soil Pollution, Vol.87, p.73-91, 1996

    Hong K. J., Tokunaga S. and Kajiuchi T., “Extraction of heavy metals from MSW incinerator fly ashes by chelating agents”, Journal of Hazardous Materials, B75, p.57-73, 2000

    Hutchins S. R., Davidson M. S., Brierley J. A. and Brierley C. L., “Microorganisms in reclamation of metals “, Ann. Rev. Micro., Vol.40, p.311-336, 1986

    Kabata P. A., “Behavioural properties of trace metals in soils”, Applied Geochemistry, Vol.2, p.3-9, 1993

    Lundgren D. G. and Silver M., “Ore leaching by bacteria“, Ann. Rev. Micro., Vol.34, p.263-283, 1980

    Maize I., Arambarri I., Garcia R. and Millan E., “Evaluation of metal availability in polluted soils by two sequential extraction procedures using factor analysis”, Environmential Pollution, Vol.110, p.3-9, 2000

    Ma Y. B. and Uren N. C., “Transformations of heavy metals added to soil- application of a new sequential extraction procedures”, Geoderma, Vol.84, p.157-168, 1998

    Naoum. C., Fatta D., Haralambous K. J. and Maria L., “Removal of heavy metals from sewage sludge by acid treatment”, J. Environ. Sci. Health, A36(5), p.873-881, 2001

    Neale C. N., Bricka R. M. and Allen C. C., “Evaluating acids and chelating agents for removing heavy metals from contaminated soils”, Enviromental Progress, Vol.16, No.4, 1997

    Oliver B. G. and Carey J. H., “Acid solubilization of sewage sludge and ash constituents for possible recovery”, Water Research, Vol.10, p.1077-1081, 1976

    Onaka T., “Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge”, Wat. Sci. Tech., Vol.41, No.8, p.93-98, 2000

    Perez-cid. B., Lavilla. I. and Bendicho. C., “Application of microwave extraction for partitioning of heavy metals in sewage sludge”, Analytica Chemica Acta, Vol.378, p.201-210, 1999

    Robert W. P., “Chelant extraction of heavy metals from contaminated soils”, Journal of Hazardous Materials, Vol.66, p.151-210, 1999

    Savvides C., Papadopoulos A., Haralambous K. J. and Loizidou M., “Sea sediments contanminated with heavy metals: metal speciation and removal”, Wat. Sci. Tech., Vol.32, No.9, p.65-73, 1996

    Scancar J., Radmila M., Marjeta S. and Olga B., “Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge”, The Science of the Total Environment, Vol.250, p.9-19, 2000

    Sreekrishnan T. R. and Tyagi R. D., “Sensitivity of metal-bioleaching operation to process variables “, Process Biochem., Vol.30, p.69-80, 1995

    Tessier. A., Campbell. P. G. C. and Bisson M., “Sequential extraction procedure for the speciation of particulate trace metals”, Analytical Chemistry, Vol.51, No.7, 1979

    Tokalioglu S., Kartal S. and Elci L., “Determination of heavy metals and their speciation in lake sediments by flame atomic adsorption spectrometry after a four-stage sequential extraction procedures”, Analytical Chimical Acta, Vol.413, p.33-40, 2000

    Vanni. A., Gennaro. M. C., Cignetti. A., Petronio. B. M., Petruzzelli. G. and Liberatori. A., “Heavy metal speciation in anaerobic municipal sludge comparison between single and sequential extraction”, J. Environ. Sci. Health, p.1467-1489, 1997

    Veeken A. H. M. and Hamelers H. V. M., “Removal of heavy metals from sewage sludge by extraction with organic acids”, Wat. Sci. Tech., Vol.40, No.1, p.129-136, 1999

    Wozniak D. J. and Huang J. Y. C., “Variables affecting metal removal from sludge “, J. Water Pollut. Control Fed., Vol.54, p.1574, 1982

    Weather J. and Ogada T., “Sewage sludge combustion”, Progress in Energy and Combustion Science, Vol.25, p.55-116, 1999

    Wong J. W. C., Fang K. L. and Su D. C., “Toxicity evaluation of sewage sludges in Hong Kong”, Enviroment International, Vol.27, p.373-380, 2001

    下載圖示 校內:立即公開
    校外:2003-06-03公開
    QR CODE