簡易檢索 / 詳目顯示

研究生: 張永昇
Chang, Yung-Sheng
論文名稱: 利用第三型纖連結蛋白的第九個且/或第十個模組片段設計對整合蛋白alpha5beta1且/或alphavbeta3有專一性的拮抗劑並進行結構鑑定與生醫應用
Design, Structure Determination, and Biological Evaluation of Potent Integrin alpha5beta1 and/or alphavbeta3-Specific Antagonist Using the Ninth and/or Tenth Module of Fibronectin Type III Domain
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 182
中文關鍵詞: 整合蛋白纖維連結蛋白拮抗劑專一性溶解度熱穩定度結構血管新生癌症治療
外文關鍵詞: integrin, fibronectin, antagonist, specificity, solubility, thermostability, structure, angiogenesis, cancer therapy
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 整合蛋白 (integrins) 為穿越細胞膜的接受器,可調節細胞與其周遭組織如其他細胞以及細胞外間質的黏著,整合蛋白也參與細胞的訊息傳遞,因而影響細胞的形狀、移動以及細胞週期的調控,纖維連結蛋白 (fibronectin) 是一個會與整合蛋白結合的細胞外間質糖蛋白,纖維連結蛋白的組成包含有第一型 (Fn1) 、第二型 (Fn2) 及第三型 (Fn3) 三種不同類別的重複性單元 (homologous repeating domains),其中第一型 (Fn1) 有12個,第二型 (Fn2) 有2個,第三型 (Fn3) 有15-17個,已知,第三型重複性單元的第九個與第十個模組 (module) 片段 (9,10Fn3) 或第十個模組 (module) 片段 (10Fn3) 可以分別與整合蛋白 α5β1 或 αvβ3 有辨識作用,但運用9,10Fn3 和10Fn3設計對整合蛋白的拮抗劑,必須使其具有較高的溶解度、穩定度、選擇性及活性,因此,本研究我們欲使用 9,10Fn3 和 10Fn3 作為鷹架蛋白 (scaffold) 來分別設計出對整合蛋白 α5β1 和/或 αvβ3 有專一性的拮抗劑 (integrin-specific antagonists),期望: (1) 藉由結合去整合蛋白 (disintegrin) 的序列以及改變 RGD loop 上雙硫鍵的鍵結模式 (CXnC),來設計出對整合蛋白 α5β1 和/或 αvβ3 有專一性的突變株; 並且,(2) 對專一性的突變株進行特性分析; 同時,(3) 探討專一性突變株之結構與功能間的關係; 最後,(4) 評價專一性突變株其應用上的意義。目前,已成功地用大腸桿菌表現系統表現出多於20種 9,10Fn3 和 10Fn3 及其突變株,且可以得到純的蛋白產物; 根據核磁共振 (NMR) 分析的結果顯示出,9,10Fn3 和10Fn3及其突變株有正確的摺疊 (fold); 而在加入一對雙硫鍵於 9,10Fn3 和 10Fn3 的RGD loop後,突變株會分別對 α5β1 或 αvβ3 有較高的親合力 (affinity) 與選擇性 (selectivity),從血小板凝集實驗的結果顯示,Fn3系列突變株較不會影響血小板凝集,表示其較不會引起血小板缺乏症; 利用蛋白抑制細胞黏著性試驗的結果顯示,含有CX8C雙硫鍵的鍵結模式之9,10Fn3突變株對整合蛋白 α5β1 有較高專一性 (specificity),而含有CX7C雙硫鍵的鍵結模式之10Fn3突變株則對整合蛋白 αvβ3 有較高專一性,並且我們篩選到 9,10Fn3L1408P(CRARGDNPDC) 為能專一性地抑制整合蛋白 α5β1 的突變株,其半抑制濃度為67 nM,而 10Fn3(CPRGDMPDC) 為能專一地抑制整合蛋白 αvβ3 的突變株,其半抑制濃度為93 nM; 此外,含有一對雙硫鍵的突變株,不僅有較高活性,更具有較高的溶解度 (solubility) 與熱穩定度 (thermostability); 經由大小排阻層析 (SEC) 搭配多角雷射光散射 (MALLS) 方法分析顯示,具專一性的突變株皆以單體 (monomer) 存在於溶液中;由熱分析儀 (DSC) 的結果呈現出,對整合蛋白 α5β1 或 αvβ3 有較高專一性的突變株其半解構溫度 (melting temperatures) 各為62.4 ℃和85.0 ℃; 再由硫酸銨沉澱法 (ammonium sulfate precipitation) 求得其溶解度分別為24.4 mg/mL和27.8 mg/mL。我們也利用 X-ray 結晶繞射 (diffraction) 方法解得其結構 (structure),發現專一性突變株與野生株的結構差異,在 RGD loop 的構形和其中的 R 與 D 之呈現有所不同;嵌合模型的建構 (Haddock docking models) 闡明了,對整合蛋白 α5β1有較高專一性的突變株,其與 α5β1 的嵌合模型具有最低的嵌合能量 (docking energy)。從體內與體外的血管生成實驗顯示出,對整合蛋白 α5β1 或 αvβ3 有較高專一性的突變株,可各別地抑制 VEGF 或 bFGF 所誘導的血管新生 (angiogenesis);將突變株應用在將人類癌細胞植入老鼠的模式中發現,對整合蛋白 α5β1 或 αvβ3 有較高專一性的突變株,可分別地抑制人類黑色素瘤細胞 A375 或肺癌細胞 A549 的生長。此研究,我們設計出對整合蛋白 α5β1 的專一性突變株9,10Fn3L1408P(CRARGDNPDC) 以及對整合蛋白 αvβ3 的專一性突變株10Fn3(CPRGDMPDC),並且證實其具有抑制血管新生的能力,顯示將其應用在癌症治療 (cancer therapy) 上的潛力。

    Fibronectin (Fn) is an extracellular matrix glycoprotein that binds to integrins. Integrins are membrane-spanning receptors that mediate the attachment between a cell and the tissues surrounding it, which may be other cells or the extracellular matrix (ECM). They also play a role in cell signaling and thereby define cellular shape, mobility, and regulate the cell cycle. Fn is composed of three different types of homologous repeating domains, including Fn1, Fn2, and Fn3. Fn contains 12 of Fn1, 2 of Fn2, and 15-17 of Fn3 repeats. In particular, 9,10Fn3 and 10Fn3 can interact with integrins α5β1 and αvβ3, respectively. To use 9,10Fn3 and 10Fn3 as integrin drugs, it is essential to engineer them to have high solubility, stability, selectivity, and potency. Therefore, we propose to use 9,10Fn3 and 10Fn3 as the scaffolds to design integrins α5β1 and/or αvβ3-specific antagonists. In this study I have successfully (1) designed integrin-specific variants by the incorporation of disintegrin sequences and the modification of disulfide bond pattern (CXnC) within RGD loop; (2) characterized the properties of integrins-specific 9,10Fn3 and 10Fn3 variants; (3) determined structure and function relationships of integrins-specific 9,10Fn3 and 10Fn3 variants; and (4) evaluated functional significance of integrins-specific 9,10Fn3 and 10Fn3 variants. I have expressed >20 9,10Fn3 and 10Fn3 variants in E. coli and purified them to homogeneity. NMR analysis showed that recombinant 9,10Fn3 and 10Fn3 variants had the correct folds. After the incorporation of a disulfide bond into the RGD loop of 9,10Fn3 and 10Fn3, they exhibited higher affinity and selectivity to integrins α5β1 and αvβ3. Functional analysis showed that Fn3 variants had lower activity in inhibiting platelet aggregation, suggesting that they had low thrombocytopenia effect. Cell adhesion inhibition study showed that integrin α5β1 preferred the CX8C pattern of 9,10Fn3 variants; and integrin αvβ3 preferred the CX7C pattern of 10Fn3 variants. 9,10Fn3L1408P(CRARGDNPDC) variant selectively inhibited integrin α5β1 with an IC50 value of 67 nM, and 10Fn3 (CPRGDMPDC) variant selectively inhibited integrin αvβ3 with an IC50 value of 93 nM. The incorporation of disulfide bond can increase not only their affinity to integrins but also their solubility and thermostability. Size exclusion chromatography with multi-angles laser light scattering (SEC-MALLS) results showed that integrin α5β1-specific 9,10Fn3 variant and αvβ3-specific 10Fn3 variant were monomer in solution predominately. Differential scanning calorimetry (DSC) data displayed that their melting temperatures were 62.4 ℃ and 85.0 ℃ respectively. Solubility measurements by ammonium sulfate precipitation showed that their solubilities were 24.4 mg/mL and 27.8 mg/mL. X-ray structures of integrin α5β1-specific 9,10Fn3 variant and αvβ3-specific 10Fn3 variant were determined by protein crystallography. Structural comparison between wild-type and these variants showed that the differences were found from the orientation of the RGD-containing loop, as well as the R and D residues. The docking of integrin α5β1-specific 9,10Fn3 variant into integrins showed that its integrin α5β1 had the lowest docking energy. In vitro HUVEC tube formation, migration and in vivo matrigel plug assay revealed that integrin α5β1-specific 9,10Fn3 variant and αvβ3-specific 10Fn3 variant can reduce VEGF-induced and bFGF-induced angiogenesis respectively. The study of mouse xenograft model showed that they significantly suppressed tumor growth with human melanoma cancer A375 cells and human lung cancer A549 cells. We here demonstrate that 9,10Fn3L1408P(CRARGDNPDC) and 10Fn3(CPRGDMPDC) variants with anti-angiogenic property can selectively inhibit integrins α5β1 and αvβ3, indicating their potential use in cancer therapy.

    CHINESE ABSTRACT I ABSTRACT III ACKNOWLEDGEMENTS V TABLE OF CONTENTS VII LIST OF RECIPES XI LIST OF TABLES XIII LIST OF FIGURES XV ABBRIEVATION XVII CHAPTER 1 INTRODUCTION 1 1.1 INTEGRINS AS THERAPEUTIC TARGETS 1 1.1.1 INTEGRINS 1 1.1.2 INTEGRINS AND LIGAND BINDING 1 1.1.3 INTEGRINS-LIGANDS COMPLEX STRUCTURES 2 1.1.4 INTEGRINS AND DISEASES 3 1.1.5 INTEGRIN EXPRESSION IN CANCER 3 1.1.5.1 Integrin alpha5beta1 Expression in Cancer 4 1.1.5.2 Integrin alphaVbeta3 Expression in Cancer 5 1.1.6 INTEGRINS, CANCER AND GROWTH FACTOR 6 1.1.6.1 Integrin alpha5beta1, A375 cells and VEGF 6 1.1.6.2 Integrin alphaVbeta3, A549 cells and bFGF 6 1.1.7 BLOCKADE OF INTEGRINS 6 1.1.7.1 Blockade of Integrin alpha5beta1 7 1.1.7.2 Blockade of Integrin alphaVbeta3 8 1.2 INTEGRIN ANTAGONISTS 8 1.2.1 NATURE INTEGRIN LIGANDS – DISINTEGRINS 8 1.2.2 INTEGRIN ANTIBODIES (ALPHA5BETA1, ALPHAVBETA3) 9 1.2.3 PEPTIDIC INTEGRIN INHIBITORS (ALPHA5BETA1, ALPHAVBETA3) 10 1.2.4 SMALL-MOLECULE INTEGRIN INHIBITORS (ALPHA5BETA1, ALPHAVBETA3) 10 1.3 THE PROBLEMS OF INTEGRIN ANTAGONISTS 10 1.4 ALTERNATIVE SCAFFOLDS FOR DRUG DESIGN 11 1.5 FIBRONECTIN AS THE PROTEIN SCAFFOLD FOR DRUG DESIGN 12 1.5.1 FIBRONECTIN (FN) 12 1.5.2 FIBRONECTIN TYPE III DOMAIN (FN3) 13 1.5.3 THE NINTH AND/OR TENTH MODULE OF FIBRONECTIN TYPE III DOMAIN (9,10FN3 OR 10FN3) 14 1.6 DESIGN, STRUCTURAL DETERMINATION AND BIOLOGICAL EVALUATION OF INTEGRIN ALPHA5BETA1 OR ALPHAVBETA3 -SPECIFIC ANTAGONIST USING 9,10FN3 OR 10FN3 AS THE SCAFFOLDS 15 1.6.1 RESEARCH MOTIVATION AND SPECIFIC AIMS 15 1.6.2 STRATEGIES 16 1.6.3 PROOF-OF-CONCEPT 18 CHAPTER 2 MATERIALS AND METHODS 19 2.1 EXPRESSION AND PURIFICATION OF FN3 AND ITS MUTANTS 19 2.2 NMR SPECTROSCOPY 20 2.3 PLATELET AGGREGATION INHIBITION ASSAY 20 2.4 CELL ADHESION INHIBITION ASSAY 21 2.5 SIZE EXCLUSION CHROMATOGRAPHY WITH MULTI-ANGLES LASER LIGHT SCATTERING (SEC-MALLS) 22 2.6 DIFFERENTIAL SCANNING CALORIMETRY (DSC) 24 2.7 AMMONIUM SULFATE PRECIPITATION 26 2.8 PROTEIN CRYSTALLOGRAPHY 28 2.8.1 CRYSTALLIZATION 28 2.8.2 DIFFRACTION DATA COLLECTION, STRUCTURE DETERMINATION AND REFINEMENT 28 2.9 MOLECULAR DOCKING 29 2.9.1 MOLECULAR DOCKING OF FN3 VARIANTS INTO INTEGRIN ALPHAVBETA3 29 2.9.2 MOLECULAR DOCKING OF FN3 VARIANTS INTO INTEGRIN ALPHA5BETA1 30 2.9.3 MOLECULAR DOCKING OF FN3 VARIANTS INTO INTEGRIN ALPHAIIBBETA3 31 2.10 CELL CULTURE 31 2.11 FLOW CYTOMETRY ANALYSIS 32 2.12 CELL VIABILITY ASSAY (A375, A549 AND HUVECS) 33 2.12.1 ANCHORAGE-DEPENDENT 33 2.12.1.1 Cell Number Counting (Trypan Blue Exclusion) 33 2.12.1.2 Apoptosis (Annexin V/PI staining) 33 2.12.2 ANCHORAGE-INDEPENDENT 33 2.12.2.1 Soft Agar Colony Formation Assay 33 2.12.2.2 Cell Suspension on Poly-HEMA Coating Plate 34 2.13 TUBE FORMATION 35 2.14 FGF-INDUCED HUVEC MIGRATION ASSAY 35 2.15 IN VIVO MATRIGEL PLUG ANGIOGENESIS ASSAY 36 2.16 ESTABLISHMENT OF HUMAN TUMOR XENOGRAFTS IN IMMUNODEFICIENT MICE 36 CHAPTER 3 RESULTS 39 3.1 EXPRESSION, PURIFICATION AND MASS CHARACTERIZATION OF FN3 VARIANTS 39 3.2 PROTEIN FOLDING OF FN3 VARIANTS BY NMR SPECTROSCOPY 39 3.3 PLATELET AGGREGATION INHIBITION ACTIVITY OF FN3 VARIANTS 40 3.4 INTEGRIN AFFINITY AND SELECTIVITY SCREENED BY CELL ADHESION INHIBITION 40 3.5 DETERMINATION OF MOLECULAR WEIGHT AND OLIGOMERIC STATE BY SEC-MALLS 43 3.6 THERMAL STABILITY ANALYZED BY DSC 43 3.7 SOLUBILITY MEASUREMENT BY AMMONIUM SULFATE PRECIPITATION 44 3.8 CRYSTAL STRUCTURES OF FN3 VARIANTS 45 3.8.1 OVERALL STRUCTURES OF 9,10FN3L1408P(CRARGDNPDC) AND 10FN3(CPRGDMPDC) 45 3.8.2 STRUCTURAL COMPARISON WITH WILD TYPE PROTEIN 46 3.9 DOCKING MODEL OF FN3 VARIANTS WITH INTEGRINS 48 3.9.1 INTERACTION DIFFERENCE AND ENERGY IN THE DOCKING MODELS OF INTEGRIN ALPHA5BETA1- 9,10FN3 AND 9,10FN3L1408P(CRARGDNPDC) COMPLEXES 48 3.10 INTEGRIN EXPRESSION PROFILES OF CELLS 50 3.11 THE EFFECTS OF FN3 VARIANTS ON CELL VIABILITY 50 3.11.1 NO INHIBITION ON ANCHORAGE-DEPENDENT CELL VIABILITY BY FN3 VARIANTS 50 3.11.2 NO INHIBITION ON ANCHORAGE-INDEPENDENT CELL VIABILITY BY FN3 VARIANTS 51 3.12 THE EFFECTS ON GROWTH FACTOR-INDUCED HUVEC TUBE FORMATION AND MIGRATION IN VITRO 51 3.12.1 INHIBITION ON VEGF-INDUCED TUBE FORMATION BY 9,10FN3L1408P(CRARGDNPDC) 51 3.12.2 NO INHIBITION ON BFGF-INDUCED TUBE FORMATION BY 10FN3(CPRGDMPDC) 52 3.12.3 INHIBITION ON BFGF-INDUCED HUVEC MIGRATION BY 10FN3(CPRGDMPDC) 52 3.13 THE EFFECTS ON GROWTH FACTOR AND MATRIGEL-INDUCED ANGIOGENESIS IN VIVO 53 3.13.1 INHIBITION ON VEGF-INDUCED ANGIOGENESIS BY 9,10FN3L1408P(CRARGDNPDC) 53 3.13.2 INHIBITION ON BFGF-INDUCED ANGIOGENESIS BY 10FN3(CPRGDMPDC) 53 3.14 THE EFFECTS ON THE GROWTH OF HUMAN TUMOR XENOGRAFTS IN NOD-SCID MICE 54 3.14.1 INHIBITION ON A375 TUMOR GROWTH BY 9,10FN3L1408P(CRARGDNPDC) 54 3.14.2 INHIBITION ON A549 TUMOR GROWTH BY 10FN3(CPRGDMPDC) 55 CHAPTER 4 DISCUSSION 57 4.1 THE ENHANCED AFFINITY AND SELECTIVITY 57 4.2 THE INCREASED THERMALSTABILITY AND SOLUBILITY 58 4.3 STRUCTURE-ACTIVITY RELATIONSHIP (SAR) 59 4.4 ANTI-ANGIOGENIC ACTIVITY 62 4.5 ANTI-TUMOR EFFECTS 63 4.6 NOVELTY 64 CHAPTER 5 CONCLUSIONS 67 CHAPTER 6 FUTURE PERSPECTIVE 71 REFERENCES 75 RECIPES 97 TABLES 103 FIGURES 123 PUBLICATIONS 165 APPENDIX 167

    Adachi, M., Taki, T., Higashiyama, M., Kohno, N., Inufusa, H., and Miyake, M. (2000). Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 6, 96-101.
    Adler, M., Lazarus, R.A., Dennis, M.S., and Wagner, G. (1991). Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science (New York, NY) 253, 445-448.
    Albini, A., Pennesi, G., Donatelli, F., Cammarota, R., De Flora, S., and Noonan, D.M. (2010). Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. Journal of the National Cancer Institute 102, 14-25.
    Altroff, H., Choulier, L., and Mardon, H.J. (2003). Synergistic activity of the ninth and tenth FIII domains of human fibronectin depends upon structural stability. The Journal of biological chemistry 278, 491-497.
    Aota, S., Nagai, T., and Yamada, K.M. (1991). Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. The Journal of biological chemistry 266, 15938-15943.
    Aota, S., Nomizu, M., and Yamada, K.M. (1994). The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. The Journal of biological chemistry 269, 24756-24761.
    Arakawa, T., and Wen, J. (2001). Size-Exclusion Chromatography with On-Line Light
    Scattering. In Current Protocols in Protein Science (John Wiley & Sons, Inc.).
    Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual review of cell and developmental biology 21, 381-410.
    Askari, J.A., Buckley, P.A., Mould, A.P., and Humphries, M.J. (2009). Linking integrin conformation to function. Journal of cell science 122, 165-170.
    Avramopoulou, V., Mamalaki, A., and Tzartos, S.J. (2004). Soluble, oligomeric, and ligand-binding extracellular domain of the human alpha7 acetylcholine receptor expressed in yeast: replacement of the hydrophobic cysteine loop by the hydrophilic loop of the ACh-binding protein enhances protein solubility. The Journal of biological chemistry 279, 38287-38293.
    Bagby, S., Tong, K.I., and Ikura, M. (2001). Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods in enzymology 339, 20-41.
    Baneyx, G., and Vogel, V. (1999). Self-assembly of fibronectin into fibrillar networks underneath dipalmitoyl phosphatidylcholine monolayers: role of lipid matrix and tensile forces. Proceedings of the National Academy of Sciences of the United States of America 96, 12518-12523.
    Barkan, D., and Chambers, A.F. (2011). beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 7219-7223.
    Batori, V., Koide, A., and Koide, S. (2002). Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein engineering 15, 1015-1020.
    Baumann, A. (2006). Early development of therapeutic biologics--pharmacokinetics. Current drug metabolism 7, 15-21.
    Bell-McGuinn, K.M., Matthews, C.M., Ho, S.N., Barve, M., Gilbert, L., Penson, R.T., Lengyel, E., Palaparthy, R., Gilder, K., Vassos, A., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic oncology 121, 273-279.
    Berman, A.E., Kozlova, N.I., and Morozevich, G.E. (2003). Integrins: structure and signaling. Biochemistry Biokhimiia 68, 1284-1299.
    Bhaskar, V., Fox, M., Breinberg, D., Wong, M.H., Wales, P.E., Rhodes, S., DuBridge, R.B., and Ramakrishnan, V. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational new drugs 26, 7-12.
    Billings, K.S., Best, R.B., Rutherford, T.J., and Clarke, J. (2008). Crosstalk between the Protein Surface and Hydrophobic Core in a Core-swapped Fibronectin Type III Domain. Journal of molecular biology 375, 560-571.
    Binz, H.K., Amstutz, P., and Pluckthun, A. (2005). Engineering novel binding proteins from nonimmunoglobulin domains. Nature biotechnology 23, 1257-1268.
    Bix, G., and Iozzo, R.V. (2005). Matrix revolutions: "tails" of basement-membrane components with angiostatic functions. Trends in cell biology 15, 52-60.
    Bloch, W., Forsberg, E., Lentini, S., Brakebusch, C., Martin, K., Krell, H.W., Weidle, U.H., Addicks, K., and Fassler, R. (1997). Beta 1 integrin is essential for teratoma growth and angiogenesis. The Journal of cell biology 139, 265-278.
    Bloom, L., and Calabro, V. (2009). FN3: a new protein scaffold reaches the clinic. Drug discovery today 14, 949-955.
    Bork, P., and Doolittle, R.F. (1992). Proposed acquisition of an animal protein domain by bacteria. Proceedings of the National Academy of Sciences of the United States of America 89, 8990-8994.
    Bowditch, R.D., Halloran, C.E., Aota, S., Obara, M., Plow, E.F., Yamada, K.M., and Ginsberg, M.H. (1991). Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) recognizes multiple sites in fibronectin. The Journal of biological chemistry 266, 23323-23328.
    Bowditch, R.D., Hariharan, M., Tominna, E.F., Smith, J.W., Yamada, K.M., Getzoff, E.D., and Ginsberg, M.H. (1994). Identification of a novel integrin binding site in fibronectin. Differential utilization by beta 3 integrins. The Journal of biological chemistry 269, 10856-10863.
    Bredel, M., Bredel, C., Juric, D., Harsh, G.R., Vogel, H., Recht, L.D., and Sikic, B.I. (2005). Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer research 65, 8679-8689.
    Breslauer, K.J., Freire, E., and Straume, M. (1992). Calorimetry: a tool for DNA and ligand-DNA studies. Methods in enzymology 211, 533-567.
    Calvete, J.J. (2005). Structure-function correlations of snake venom disintegrins. Current pharmaceutical design 11, 829-835.
    Calvete, J.J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., and Sanz, L. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon : official journal of the International Society on Toxinology 45, 1063-1074.
    Cao, R., Wu, H.L., Veitonmaki, N., Linden, P., Farnebo, J., Shi, G.Y., and Cao, Y. (1999). Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proceedings of the National Academy of Sciences of the United States of America 96, 5728-5733.
    Carpenter, J.F., Kendrick, B.S., Chang, B.S., Manning, M.C., and Randolph, T.W. (1999). Inhibition of stress-induced aggregation of protein therapeutics. Methods in enzymology 309, 236-255.
    Carr, P.A., Erickson, H.P., and Palmer, A.G., 3rd (1997). Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure (London, England : 1993) 5, 949-959.
    Chen, C.T., and Hung, M.C. (2013). Beyond anti-VEGF: dual-targeting antiangiogenic and antiproliferative therapy. American journal of translational research 5, 393-403.
    Cho, J., and Mosher, D.F. (2006). Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood 108, 2229-2236.
    Choi, S., Lee, S.A., Kwak, T.K., Kim, H.J., Lee, M.J., Ye, S.K., Kim, S.H., Kim, S., and Lee, J.W. (2009). Cooperation between integrin alpha5 and tetraspan TM4SF5 regulates VEGF-mediated angiogenic activity. Blood 113, 1845-1855.
    Copie, V., Tomita, Y., Akiyama, S.K., Aota, S., Yamada, K.M., Venable, R.M., Pastor, R.W., Krueger, S., and Torchia, D.A. (1998). Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. Journal of molecular biology 277, 663-682.
    Cota, E., Hamill, S.J., Fowler, S.B., and Clarke, J. (2000). Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability. Journal of molecular biology 302, 713-725.
    Cota, E., Steward, A., Fowler, S.B., and Clarke, J. (2001). The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold. Journal of molecular biology 305, 1185-1194.
    Couchman, J.R., Austria, M.R., and Woods, A. (1990). Fibronectin-cell interactions. The Journal of investigative dermatology 94, 7S-14S.
    Cox, D., Brennan, M., and Moran, N. (2010). Integrins as therapeutic targets: lessons and opportunities. Nature reviews Drug discovery 9, 804-820.
    Craig, D., Krammer, A., Schulten, K., and Vogel, V. (2001). Comparison of the early stages of forced unfolding for fibronectin type III modules. Proceedings of the National Academy of Sciences of the United States of America 98, 5590-5595.
    Dale, G.E., Broger, C., Langen, H., D'Arcy, A., and Stuber, D. (1994). Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein engineering 7, 933-939.
    Das, D., and Georgiadis, M.M. (2001). A directed approach to improving the solubility of Moloney murine leukemia virus reverse transcriptase. Protein science : a publication of the Protein Society 10, 1936-1941.
    Demarest, S.J., Rogers, J., and Hansen, G. (2004). Optimization of the antibody C(H)3 domain by residue frequency analysis of IgG sequences. Journal of molecular biology 335, 41-48.
    Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature reviews Cancer 10, 9-22.
    Dickinson, C.D., Veerapandian, B., Dai, X.P., Hamlin, R.C., Xuong, N.H., Ruoslahti, E., and Ely, K.R. (1994). Crystal structure of the tenth type III cell adhesion module of human fibronectin. Journal of molecular biology 236, 1079-1092.
    Dominguez, C., Boelens, R., and Bonvin, A.M. (2003). HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society 125, 1731-1737.
    Du, X., Gu, M., Weisel, J.W., Nagaswami, C., Bennett, J.S., Bowditch, R., and Ginsberg, M.H. (1993). Long range propagation of conformational changes in integrin alpha IIb beta 3. The Journal of biological chemistry 268, 23087-23092.
    Dubertret, L., Sterry, W., Bos, J.D., Chimenti, S., Shumack, S., Larsen, C.G., Shear, N.H., and Papp, K.A. (2006). CLinical experience acquired with the efalizumab (Raptiva) (CLEAR) trial in patients with moderate-to-severe plaque psoriasis: results from a phase III international randomized, placebo-controlled trial. The British journal of dermatology 155, 170-181.
    Dufour, S., Duband, J.L., Humphries, M.J., Obara, M., Yamada, K.M., and Thiery, J.P. (1988). Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. The EMBO journal 7, 2661-2671.
    Dunon, D., Piali, L., and Imhof, B.A. (1996). To stick or not to stick: the new leukocyte homing paradigm. Current opinion in cell biology 8, 714-723.
    Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta crystallographica Section D, Biological crystallography 66, 486-501.
    Enenstein, J., Waleh, N.S., and Kramer, R.H. (1992). Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Experimental cell research 203, 499-503.
    Folkman, J. (2003). Fundamental concepts of the angiogenic process. Current molecular medicine 3, 643-651.
    Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? Nature reviews Drug discovery 6, 273-286.
    Folta-Stogniew, E. (2006). Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. Methods in molecular biology (Clifton, NJ) 328, 97-112.
    Fowler, S.B., Poon, S., Muff, R., Chiti, F., Dobson, C.M., and Zurdo, J. (2005). Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proceedings of the National Academy of Sciences of the United States of America 102, 10105-10110.
    Frank, J.D., Gould, R.J., Schaffer, L.W., Davidson, J.T., Gibson, R.E., Patrick, D.H., Vonderfecht, S.L., and Cartwright, M.E. (1992). Immunocytochemical localization of platelets in baboon hepatic sinusoids using monoclonal mouse anti-human platelet glycoprotein IIIa following induction of thrombocytopenia. Histochemistry 97, 355-360.
    Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. (1995). Definition of two angiogenic pathways by distinct alpha v integrins. Science (New York, NY) 270, 1500-1502.
    Friedlander, M., Theesfeld, C.L., Sugita, M., Fruttiger, M., Thomas, M.A., Chang, S., and Cheresh, D.A. (1996). Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proceedings of the National Academy of Sciences of the United States of America 93, 9764-9769.
    Furger, K.A., Allan, A.L., Wilson, S.M., Hota, C., Vantyghem, S.A., Postenka, C.O., Al-Katib, W., Chambers, A.F., and Tuck, A.B. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Molecular cancer research : MCR 1, 810-819.
    Gebauer, M., and Skerra, A. (2009). Engineered protein scaffolds as next-generation antibody therapeutics. Current opinion in chemical biology 13, 245-255.
    Gill, P., Moghadam, T.T., and Ranjbar, B. (2010). Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal of biomolecular techniques : JBT 21, 167-193.
    Goodman, S.L., and Picard, M. (2012). Integrins as therapeutic targets. Trends in pharmacological sciences 33, 405-412.
    Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., and Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 195, 168-171.
    Graells, J., Vinyals, A., Figueras, A., Llorens, A., Moreno, A., Marcoval, J., Gonzalez, F.J., and Fabra, A. (2004). Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. The Journal of investigative dermatology 123, 1151-1161.
    Haas, T.A., and Plow, E.F. (1994). Integrin-ligand interactions: a year in review. Current opinion in cell biology 6, 656-662.
    Haynie, D.T., and Freire, E. (1994). Estimation of the folding/unfolding energetics of marginally stable proteins using differential scanning calorimetry. Analytical biochemistry 216, 33-41.
    Heckmann, D., Meyer, A., Laufer, B., Zahn, G., Stragies, R., and Kessler, H. (2008). Rational design of highly active and selective ligands for the alpha5beta1 integrin receptor. Chembiochem : a European journal of chemical biology 9, 1397-1407.
    Heckmann, D., Meyer, A., Marinelli, L., Zahn, G., Stragies, R., and Kessler, H. (2007). Probing integrin selectivity: rational design of highly active and selective ligands for the alpha5beta1 and alphavbeta3 integrin receptor. Angewandte Chemie (International ed in English) 46, 3571-3574.
    Hersey, P., Sosman, J., O'Day, S., Richards, J., Bedikian, A., Gonzalez, R., Sharfman, W., Weber, R., Logan, T., Buzoianu, M., et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer 116, 1526-1534.
    Hey, T., Fiedler, E., Rudolph, R., and Fiedler, M. (2005). Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends in biotechnology 23, 514-522.
    Hocking, D.C., Smith, R.K., and McKeown-Longo, P.J. (1996). A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. The Journal of cell biology 133, 431-444.
    Hosotani, R., Kawaguchi, M., Masui, T., Koshiba, T., Ida, J., Fujimoto, K., Wada, M., Doi, R., and Imamura, M. (2002). Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25, e30-35.
    Huang, T.F. (1998). What have snakes taught us about integrins? Cellular and molecular life sciences : CMLS 54, 527-540.
    Humphries, M.J. (2000). Integrin structure. Biochemical Society transactions 28, 311-339.
    Humphries, M.J., and Mould, A.P. (2001). Structure. An anthropomorphic integrin. Science (New York, NY) 294, 316-317.
    Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
    Hynes, R.O., Schwarzbauer, J.E., and Tamkun, J.W. (1984). Fibronectin: a versatile gene for a versatile protein. Ciba Foundation symposium 108, 75-92.
    Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., and Lohikangas, L. (1997). Fibronectin-integrin interactions. Frontiers in bioscience : a journal and virtual library 2, d126-146.
    Kang, I.C., Kim, D.S., Jang, Y., and Chung, K.H. (2000). Suppressive mechanism of salmosin, a novel disintegrin in B16 melanoma cell metastasis. Biochemical and biophysical research communications 275, 169-173.
    Kang, I.C., Lee, Y.D., and Kim, D.S. (1999). A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer research 59, 3754-3760.
    Kapila, Y.L., Niu, J., and Johnson, P.W. (1997). The high affinity heparin-binding domain and the V region of fibronectin mediate invasion of human oral squamous cell carcinoma cells in vitro. The Journal of biological chemistry 272, 18932-18938.
    Kim, S., Bakre, M., Yin, H., and Varner, J.A. (2002). Inhibition of endothelial cell survival and angiogenesis by protein kinase A. The Journal of clinical investigation 110, 933-941.
    Kim, S., Bell, K., Mousa, S.A., and Varner, J.A. (2000a). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American journal of pathology 156, 1345-1362.
    Kim, S., Harris, M., and Varner, J.A. (2000b). Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. The Journal of biological chemistry 275, 33920-33928.
    Kita, D., Takino, T., Nakada, M., Takahashi, T., Yamashita, J., and Sato, H. (2001). Expression of dominant-negative form of Ets-1 suppresses fibronectin-stimulated cell adhesion and migration through down-regulation of integrin alpha5 expression in U251 glioma cell line. Cancer research 61, 7985-7991.
    Kitchen, D.B., Decornez, H., Furr, J.R., and Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery 3, 935-949.
    Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., and Martin, G.R. (1986). Basement membrane complexes with biological activity. Biochemistry 25, 312-318.
    Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., and Cheresh, D.A. (1997). Regulation of cell motility by mitogen-activated protein kinase. The Journal of cell biology 137, 481-492.
    Koh, D.C., Armugam, A., and Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and molecular life sciences : CMLS 63, 3030-3041.
    Koide, A., Bailey, C.W., Huang, X., and Koide, S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. Journal of molecular biology 284, 1141-1151.
    Koide, A., Gilbreth, R.N., Esaki, K., Tereshko, V., and Koide, S. (2007). High-affinity single-domain binding proteins with a binary-code interface. Proceedings of the National Academy of Sciences of the United States of America 104, 6632-6637.
    Koide, A., and Koide, S. (2007). Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods in molecular biology (Clifton, NJ) 352, 95-109.
    Krammer, A., Lu, H., Isralewitz, B., Schulten, K., and Vogel, V. (1999). Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proceedings of the National Academy of Sciences of the United States of America 96, 1351-1356.
    Kren, A., Baeriswyl, V., Lehembre, F., Wunderlin, C., Strittmatter, K., Antoniadis, H., Fassler, R., Cavallaro, U., and Christofori, G. (2007). Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. The EMBO journal 26, 2832-2842.
    Leahy, D.J., Aukhil, I., and Erickson, H.P. (1996). 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-164.
    Lee, H.J., Kim, S.Y., Koh, J.M., Bok, J., Kim, K.J., Kim, K.S., Park, M.H., Shin, H.D., Park, B.L., Kim, T.H., et al. (2007). Polymorphisms and haplotypes of integrinalpha1 (ITGA1) are associated with bone mineral density and fracture risk in postmenopausal Koreans. Bone 41, 979-986.
    Lengauer, T., and Rarey, M. (1996). Computational methods for biomolecular docking. Current opinion in structural biology 6, 402-406.
    Leonardi, C.L., Papp, K.A., Gordon, K.B., Menter, A., Feldman, S.R., Caro, I., Walicke, P.A., Compton, P.G., and Gottlieb, A.B. (2005). Extended efalizumab therapy improves chronic plaque psoriasis: results from a randomized phase III trial. Journal of the American Academy of Dermatology 52, 425-433.
    Lipovsek, D. (2011). Adnectins: engineered target-binding protein therapeutics. Protein engineering, design & selection : PEDS 24, 3-9.
    Lipovsek, D., Lippow, S.M., Hackel, B.J., Gregson, M.W., Cheng, P., Kapila, A., and Wittrup, K.D. (2007). Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. Journal of molecular biology 368, 1024-1041.
    Litvinovich, S.V., and Ingham, K.C. (1995). Interactions between type III domains in the 110 kDa cell-binding fragment of fibronectin. Journal of molecular biology 248, 611-626.
    Maeshima, Y., Colorado, P.C., Torre, A., Holthaus, K.A., Grunkemeyer, J.A., Ericksen, M.B., Hopfer, H., Xiao, Y., Stillman, I.E., and Kalluri, R. (2000). Distinct antitumor properties of a type IV collagen domain derived from basement membrane. The Journal of biological chemistry 275, 21340-21348.
    Maglott, A., Bartik, P., Cosgun, S., Klotz, P., Ronde, P., Fuhrmann, G., Takeda, K., Martin, S., and Dontenwill, M. (2006). The small alpha5beta1 integrin antagonist, SJ749, reduces proliferation and clonogenicity of human astrocytoma cells. Cancer research 66, 6002-6007.
    Magnussen, A., Kasman, I.M., Norberg, S., Baluk, P., Murray, R., and McDonald, D.M. (2005). Rapid access of antibodies to alpha5beta1 integrin overexpressed on the luminal surface of tumor blood vessels. Cancer research 65, 2712-2721.
    Mahabeleshwar, G.H., Chen, J., Feng, W., Somanath, P.R., Razorenova, O.V., and Byzova, T.V. (2008). Integrin affinity modulation in angiogenesis. Cell cycle (Georgetown, Tex) 7, 335-347.
    Main, A.L., Harvey, T.S., Baron, M., Boyd, J., and Campbell, I.D. (1992). The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71, 671-678.
    Malinda, K.M. (2009). In vivo matrigel migration and angiogenesis assay. Methods in molecular biology (Clifton, NJ) 467, 287-294.
    Malissard, M., and Berger, E.G. (2001). Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. European journal of biochemistry / FEBS 268, 4352-4358.
    Mao, Y., and Schwarzbauer, J.E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix biology : journal of the International Society for Matrix Biology 24, 389-399.
    Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., and Niewiarowski, S. (1997). Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood 90, 1565-1575.
    Margadant, C., and Sonnenberg, A. (2010). Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO reports 11, 97-105.
    Marinelli, L., Meyer, A., Heckmann, D., Lavecchia, A., Novellino, E., and Kessler, H. (2005). Ligand binding analysis for human alpha5beta1 integrin: strategies for designing new alpha5beta1 integrin antagonists. Journal of medicinal chemistry 48, 4204-4207.
    Marrink, J., vd Geest, S., Sinnema, R., Vellenga, E., and de Vries, E.G. (1985). Fibronectin-complex (FN-C) present in normal plasma. Thrombosis research 37, 689-692.
    Martin, S., Cosset, E.C., Terrand, J., Maglott, A., Takeda, K., and Dontenwill, M. (2009). Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochimica et biophysica acta 1793, 354-367.
    Martino, M.M., Mochizuki, M., Rothenfluh, D.A., Rempel, S.A., Hubbell, J.A., and Barker, T.H. (2009). Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30, 1089-1097.
    Martino, M.M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G.A., Muller, R., Livne, E., Eming, S.A., and Hubbell, J.A. (2011). Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Science translational medicine 3, 100ra189.
    Mas-Moruno, C., Rechenmacher, F., and Kessler, H. (2010). Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti-cancer agents in medicinal chemistry 10, 753-768.
    McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. Journal of applied crystallography 40, 658-674.
    Mogridge, J. (2004). Using light scattering to determine the stoichiometry of protein complexes. Methods in molecular biology (Clifton, NJ) 261, 113-118.
    Mosavi, L.K., and Peng, Z.Y. (2003). Structure-based substitutions for increased solubility of a designed protein. Protein engineering 16, 739-745.
    Mould, A.P., Askari, J.A., Aota, S., Yamada, K.M., Irie, A., Takada, Y., Mardon, H.J., and Humphries, M.J. (1997). Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. The Journal of biological chemistry 272, 17283-17292.
    Mould, A.P., Askari, J.A., and Humphries, M.J. (2000). Molecular basis of ligand recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino acid sequences in the second and third NH2-terminal repeats of the alpha subunit. The Journal of biological chemistry 275, 20324-20336.
    Muether, P.S., Dell, S., Kociok, N., Zahn, G., Stragies, R., Vossmeyer, D., and Joussen, A.M. (2007). The role of integrin alpha5beta1 in the regulation of corneal neovascularization. Experimental eye research 85, 356-365.
    Murphy, M.G., Cerchio, K., Stoch, S.A., Gottesdiener, K., Wu, M., and Recker, R. (2005). Effect of L-000845704, an alphaVbeta3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. The Journal of clinical endocrinology and metabolism 90, 2022-2028.
    Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta crystallographica Section D, Biological crystallography 67, 355-367.
    Nagae, M., Re, S., Mihara, E., Nogi, T., Sugita, Y., and Takagi, J. (2012). Crystal structure of alpha5beta1 integrin ectodomain: atomic details of the fibronectin receptor. The Journal of cell biology 197, 131-140.
    Nagai, T., Yamakawa, N., Aota, S., Yamada, S.S., Akiyama, S.K., Olden, K., and Yamada, K.M. (1991). Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. The Journal of cell biology 114, 1295-1305.
    Nakamura, I., Duong le, T., Rodan, S.B., and Rodan, G.A. (2007). Involvement of alpha(v)beta3 integrins in osteoclast function. Journal of bone and mineral metabolism 25, 337-344.
    Nemeth, J.A., Nakada, M.T., Trikha, M., Lang, Z., Gordon, M.S., Jayson, G.C., Corringham, R., Prabhakar, U., Davis, H.M., and Beckman, R.A. (2007). Alpha-v integrins as therapeutic targets in oncology. Cancer investigation 25, 632-646.
    Nygren, P.A., and Skerra, A. (2004). Binding proteins from alternative scaffolds. Journal of immunological methods 290, 3-28.
    Obara, M., Kang, M.S., and Yamada, K.M. (1988). Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53, 649-657.
    Ogawa, T., Takayama, K., Takakura, N., Kitano, S., and Ueno, H. (2002). Anti-tumor angiogenesis therapy using soluble receptors: enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer gene therapy 9, 633-640.
    Okazaki, T., Ni, A., Ayeni, O.A., Baluk, P., Yao, L.C., Vossmeyer, D., Zischinsky, G., Zahn, G., Knolle, J., Christner, C., et al. (2009). alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. The American journal of pathology 174, 2378-2387.
    Park, J.H., and Batt, C.A. (2004). Restoration of a defective Lactococcus lactis xylose isomerase. Applied and environmental microbiology 70, 4318-4325.
    Parker, M.H., Chen, Y., Danehy, F., Dufu, K., Ekstrom, J., Getmanova, E., Gokemeijer, J., Xu, L., and Lipovsek, D. (2005). Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein engineering, design & selection : PEDS 18, 435-444.
    Parsons-Wingerter, P., Kasman, I.M., Norberg, S., Magnussen, A., Zanivan, S., Rissone, A., Baluk, P., Favre, C.J., Jeffry, U., Murray, R., et al. (2005). Uniform overexpression and rapid accessibility of alpha5beta1 integrin on blood vessels in tumors. The American journal of pathology 167, 193-211.
    Passaniti, A., Taylor, R.M., Pili, R., Guo, Y., Long, P.V., Haney, J.A., Pauly, R.R., Grant, D.S., and Martin, G.R. (1992). A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Laboratory investigation; a journal of technical methods and pathology 67, 519-528.
    Patro, S.Y., Freund, E., and Chang, B.S. (2002). Protein formulation and fill-finish operations. Biotechnology annual review 8, 55-84.
    Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M.P., Jr., Hudson, B.G., and Brooks, P.C. (2000). New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. The Journal of biological chemistry 275, 8051-8061.
    Phillips, D.R., and Agin, P.P. (1977). Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. The Journal of clinical investigation 60, 535-545.
    Pierschbacher, M.D., and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33.
    Pilch, D.S. (2001). Calorimetry of Nucleic Acids. In Current Protocols in Nucleic Acid Chemistry (John Wiley & Sons, Inc.).
    Plaxco, K.W., Spitzfaden, C., Campbell, I.D., and Dobson, C.M. (1997). A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. Journal of molecular biology 270, 763-770.
    Potts, J.R., Bright, J.R., Bolton, D., Pickford, A.R., and Campbell, I.D. (1999). Solution structure of the N-terminal F1 module pair from human fibronectin. Biochemistry 38, 8304-8312.
    Privalov, P.L., and Gill, S.J. (1988). Stability of protein structure and hydrophobic interaction. Advances in protein chemistry 39, 191-234.
    Pytela, R., Pierschbacher, M.D., and Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191-198.
    Qamar, S., Islam, M., and Tayyab, S. (1993). Probing the determinants of protein solubility with amino acid modification. Journal of biochemistry 114, 786-792.
    Qasim, M.A., Salahuddin, A., and Sibghatullah (1981). Solubility of serum albumins in ammonium sulphate solution with special reference to its dependence on protein conformation. Indian journal of biochemistry & biophysics 18, 15-21.
    Rahman, S., Aitken, A., Flynn, G., Formstone, C., and Savidge, G.F. (1998). Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. The Biochemical journal 335 ( Pt 2), 247-257.
    Ramakrishnan, V., Bhaskar, V., Law, D.A., Wong, M.H., DuBridge, R.B., Breinberg, D., O'Hara, C., Powers, D.B., Liu, G., Grove, J., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of experimental therapeutics & oncology 5, 273-286.
    Reardon, D.A., Neyns, B., Weller, M., Tonn, J.C., Nabors, L.B., and Stupp, R. (2011). Cilengitide: an RGD pentapeptide alphanubeta3 and alphanubeta5 integrin inhibitor in development for glioblastoma and other malignancies. Future oncology (London, England) 7, 339-354.
    Redick, S.D., Settles, D.L., Briscoe, G., and Erickson, H.P. (2000). Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. The Journal of cell biology 149, 521-527.
    Ricci, M.S., and Brems, D.N. (2004). Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Current pharmaceutical design 10, 3901-3911.
    Robinson, S.D., and Hodivala-Dilke, K.M. (2011). The role of beta3-integrins in tumor angiogenesis: context is everything. Current opinion in cell biology 23, 630-637.
    Rosenthal, M.A., Davidson, P., Rolland, F., Campone, M., Xue, L., Han, T.H., Mehta, A., Berd, Y., He, W., and Lombardi, A. (2010). Evaluation of the safety, pharmacokinetics and treatment effects of an alpha(nu)beta(3) integrin inhibitor on bone turnover and disease activity in men with hormone-refractory prostate cancer and bone metastases. Asia-Pacific journal of clinical oncology 6, 42-48.
    Ruoslahti, E. (1984). Fibronectin in cell adhesion and invasion. Cancer metastasis reviews 3, 43-51.
    Ruoslahti, E. (1988). Fibronectin and its receptors. Annual review of biochemistry 57, 375-413.
    Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual review of cell and developmental biology 12, 697-715.
    Sanchez-Ruiz, J.M., Lopez-Lacomba, J.L., Cortijo, M., and Mateo, P.L. (1988). Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27, 1648-1652.
    Saudek, V., Atkinson, R.A., and Pelton, J.T. (1991). Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30, 7369-7372.
    Sawada, K., Mitra, A.K., Radjabi, A.R., Bhaskar, V., Kistner, E.O., Tretiakova, M., Jagadeeswaran, S., Montag, A., Becker, A., Kenny, H.A., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer research 68, 2329-2339.
    Scaloni, A., Di Martino, E., Miraglia, N., Pelagalli, A., Della Morte, R., Staiano, N., and Pucci, P. (1996). Amino acid sequence and molecular modelling of glycoprotein IIb-IIIa and fibronectin receptor iso-antagonists from Trimeresurus elegans venom. The Biochemical journal 319 ( Pt 3), 775-782.
    Schellekens, H. (2002). Bioequivalence and the immunogenicity of biopharmaceuticals. Nature reviews Drug discovery 1, 457-462.
    Schwarzbauer, J.E. (1991). Fibronectin: from gene to protein. Current opinion in cell biology 3, 786-791.
    Senn, H., and Klaus, W. (1993). The nuclear magnetic resonance solution structure of flavoridin, an antagonist of the platelet GP IIb-IIIa receptor. Journal of molecular biology 232, 907-925.
    Serini, G., Valdembri, D., and Bussolino, F. (2006). Integrins and angiogenesis: a sticky business. Experimental cell research 312, 651-658.
    Sharma, A., Askari, J.A., Humphries, M.J., Jones, E.Y., and Stuart, D.I. (1999). Crystal structure of a heparin- and integrin-binding segment of human fibronectin. The EMBO journal 18, 1468-1479.
    Sheldrake, H.M., and Patterson, L.H. (2009). Function and antagonism of beta3 integrins in the development of cancer therapy. Current cancer drug targets 9, 519-540.
    Sheu, J.R., Lin, C.H., Chung, J.L., Teng, C.M., and Huang, T.F. (1992). Triflavin, an Arg-Gly-Asp-containing antiplatelet peptide inhibits cell-substratum adhesion and melanoma cell-induced lung colonization. Japanese journal of cancer research : Gann 83, 885-893.
    Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nature reviews Drug discovery 2, 703-716.
    Shimaoka, M., Takagi, J., and Springer, T.A. (2002). Conformational regulation of integrin structure and function. Annual review of biophysics and biomolecular structure 31, 485-516.
    Siggers, K., Soto, C., and Palmer, A.G., 3rd (2007). Conformational dynamics in loop swap mutants of homologous fibronectin type III domains. Biophysical journal 93, 2447-2456.
    Silva, R., D'Amico, G., Hodivala-Dilke, K.M., and Reynolds, L.E. (2008). Integrins: the keys to unlocking angiogenesis. Arteriosclerosis, thrombosis, and vascular biology 28, 1703-1713.
    Skerra, A. (2007). Alternative non-antibody scaffolds for molecular recognition. Current opinion in biotechnology 18, 295-304.
    Smith, K.J., Jaseja, M., Lu, X., Williams, J.A., Hyde, E.I., and Trayer, I.P. (1996). Three-dimensional structure of the RGD-containing snake toxin albolabrin in solution, based on 1H NMR spectroscopy and simulated annealing calculations. International journal of peptide and protein research 48, 220-228.
    Somanath, P.R., Malinin, N.L., and Byzova, T.V. (2009). Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12, 177-185.
    Spitzfaden, C., Grant, R.P., Mardon, H.J., and Campbell, I.D. (1997). Module-module interactions in the cell binding region of fibronectin: stability, flexibility and specificity. Journal of molecular biology 265, 565-579.
    Sticht, H., Pickford, A.R., Potts, J.R., and Campbell, I.D. (1998). Solution structure of the glycosylated second type 2 module of fibronectin. Journal of molecular biology 276, 177-187.
    Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parry, G.C., Parikh, A.A., McCarty, M.F., Bucana, C.D., Mazar, A.P., and Ellis, L.M. (2003). Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. International journal of cancer Journal international du cancer 104, 496-503.
    Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., and Kalluri, R. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proceedings of the National Academy of Sciences of the United States of America 100, 4766-4771.
    Takagi, J. (2007). Structural basis for ligand recognition by integrins. Current opinion in cell biology 19, 557-564.
    Takayama, S., Ishii, S., Ikeda, T., Masamura, S., Doi, M., and Kitajima, M. (2005). The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer research 25, 79-83.
    Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
    Taylor, G.L. (2010). Introduction to phasing. Acta crystallographica Section D, Biological crystallography 66, 325-338.
    Tischenko, V.M., Abramov, V.M., and Zav'yalov, V.P. (1998). Investigation of the cooperative structure of Fc fragments from myeloma immunoglobulin G. Biochemistry 37, 5576-5581.
    Tofteng, C.L., Bach-Mortensen, P., Bojesen, S.E., Tybjaerg-Hansen, A., Hyldstrup, L., and Nordestgaard, B.G. (2007). Integrin beta3 Leu33Pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population. Pharmacogenetics and genomics 17, 85-91.
    Trevino, S.R., Scholtz, J.M., and Pace, C.N. (2007). Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. Journal of molecular biology 366, 449-460.
    Trevino, S.R., Scholtz, J.M., and Pace, C.N. (2008). Measuring and increasing protein solubility. Journal of pharmaceutical sciences 97, 4155-4166.
    Tselepis, V.H., Green, L.J., and Humphries, M.J. (1997). An RGD to LDV motif conversion within the disintegrin kistrin generates an integrin antagonist that retains potency but exhibits altered receptor specificity. Evidence for a functional equivalence of acidic integrin-binding motifs. The Journal of biological chemistry 272, 21341-21348.
    Umeda, N., Kachi, S., Akiyama, H., Zahn, G., Vossmeyer, D., Stragies, R., and Campochiaro, P.A. (2006). Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Molecular pharmacology 69, 1820-1828.
    Varner, J.A., and Cheresh, D.A. (1996). Integrins and cancer. Current opinion in cell biology 8, 724-730.
    Vellon, L., Menendez, J.A., Liu, H., and Lupu, R. (2007). Up-regulation of alphavbeta3 integrin expression is a novel molecular response to chemotherapy-induced cell damage in a heregulin-dependent manner. Differentiation; research in biological diversity 75, 819-830.
    Vermeer, A.W., and Norde, W. (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical journal 78, 394-404.
    Vermeer, A.W., Norde, W., and van Amerongen, A. (2000). The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments. Biophysical journal 79, 2150-2154.
    Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of immunological methods 184, 39-51.
    Wang, W., Wang, F., Lu, F., Xu, S., Hu, W., Huang, J., Gu, Q., and Sun, X. (2011). The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo. Investigative ophthalmology & visual science 52, 7213-7220.
    Wei, L., Yang, Y., and Yu, Q. (2001). Tyrosine kinase-dependent, phosphatidylinositol 3'-kinase, and mitogen-activated protein kinase-independent signaling pathways prevent lung adenocarcinoma cells from anoikis. Cancer research 61, 2439-2444.
    Wei, L., Yang, Y., Zhang, X., and Yu, Q. (2004). Cleavage of p130Cas in anoikis. Journal of cellular biochemistry 91, 325-335.
    Weisel, J.W., Nagaswami, C., Vilaire, G., and Bennett, J.S. (1992). Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. The Journal of biological chemistry 267, 16637-16643.
    Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J., Marcinkiewicz, M.M., and McLane, M.A. (1999). Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. The Journal of biological chemistry 274, 37809-37814.
    Wierzbicka-Patynowski, I., and Schwarzbauer, J.E. (2003). The ins and outs of fibronectin matrix assembly. Journal of cell science 116, 3269-3276.
    Wilder, R.L. (2002). Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Annals of the rheumatic diseases 61 Suppl 2, ii96-99.
    Williams, E.C., Janmey, P.A., Johnson, R.B., and Mosher, D.F. (1983). Fibronectin. Effect of disulfide bond reduction on its physical and functional properties. The Journal of biological chemistry 258, 5911-5914.
    Willuda, J., Honegger, A., Waibel, R., Schubiger, P.A., Stahel, R., Zangemeister-Wittke, U., and Pluckthun, A. (1999). High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer research 59, 5758-5767.
    Xiao, T., Takagi, J., Coller, B.S., Wang, J.H., and Springer, T.A. (2004). Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59-67.
    Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science (New York, NY) 294, 339-345.
    Xiong, J.P., Stehle, T., Goodman, S.L., and Arnaout, M.A. (2003). Integrins, cations and ligands: making the connection. Journal of thrombosis and haemostasis : JTH 1, 1642-1654.
    Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science (New York, NY) 296, 151-155.
    Xu, C.S., and Rahman, S. (2001). Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 33, 153-157.
    Xu, L., Aha, P., Gu, K., Kuimelis, R.G., Kurz, M., Lam, T., Lim, A.C., Liu, H., Lohse, P.A., Sun, L., et al. (2002). Directed evolution of high-affinity antibody mimics using mRNA display. Chemistry & biology 9, 933-942.
    Yednock, T.A., Cannon, C., Fritz, L.C., Sanchez-Madrid, F., Steinman, L., and Karin, N. (1992). Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356, 63-66.
    Yeh, C.H., Peng, H.C., and Huang, T.F. (1998). Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood 92, 3268-3276.
    Yeh, C.H., Peng, H.C., and Huang, T.F. (1999). Cytokines modulate integrin alpha(v)beta(3)-mediated human endothelial cell adhesion and calcium signaling. Experimental cell research 251, 57-66.
    Yeh, C.H., Peng, H.C., Yang, R.S., and Huang, T.F. (2001). Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Molecular pharmacology 59, 1333-1342.
    Zhang, D.W., Burton-Wurster, N., and Lust, G. (1995). Alternative splicing of ED-A and ED-B sequences of fibronectin pre-mRNA differs in chondrocytes from different cartilaginous tissues and can be modulated by biological factors. The Journal of biological chemistry 270, 1817-1822.
    Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A.M., and Burridge, K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. The Journal of cell biology 141, 539-551.
    Zhou, Q., Nakada, M.T., Arnold, C., Shieh, K.Y., and Markland, F.S., Jr. (1999). Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 3, 259-269.
    Zutter, M.M., Santoro, S.A., Staatz, W.D., and Tsung, Y.L. (1995). Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America 92, 7411-7415.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE