簡易檢索 / 詳目顯示

研究生: 呂穎銓
Lyu, Ying-Cyuan
論文名稱: 以二步溶液法製備鹵化甲基銨鉛鈣鈦礦太陽能電池
Fabrication of Methylammonium Lead Halide Perovskite Solar Cells by Two Step Solution Processing
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 鈣鈦礦太陽能電池二步溶液法二氧化鈦緻密層中孔洞結構
外文關鍵詞: Perovskite, Solar cells, Two step solution processing, TiO2 compact layer, mesoporous structure
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二步溶液法進行鹵化甲基胺鉛鈣鈦礦材料之成長以及太陽能電池元件之製作,並探討元件內部之TiO2電子傳輸層對效率之影響。
    首先探討二步溶液法中鈣鈦礦材料之成長機制。透過改變有機鹽類溶液與無機鹽類薄膜之接觸時間,可控制鈣鈦礦薄膜之表面型態,並透過調整有機鹽類溶液之濃度可控制薄膜之反應程度,成功地製作出CH3NH3PbI3以及CH3NH3PbI3-xClx鈣鈦礦薄膜。接著,利用TiCl4水解法於FTO基板表面成長TiO2緻密層,並搭配前述之CH3NH3PbI3鈣鈦礦薄膜進行平面式鈣鈦礦太陽能電池之製作。在TiO2緻密層厚度為100nm之情況下,可製作出效率為8.3%之電池,然而以水熱法所製作之TiO2緻密層易受人為操作的干擾而降低實驗再現性。
    最後利用中孔洞性TiO2結構以製作中孔洞性鈣鈦礦太陽能電池,結果發現中孔洞結構之孔隙度對於電池效率影響甚劇。當孔隙度太小時,有機鹽類難以擴散進入而導致CH3NH3PbI3-xClx薄膜反應不完全。因此改以孔隙度較大之中孔洞結構,並以鈦薄膜氧化法取代水解法製作TiO2緻密層,以進一步地抑制基板暗電流,可使電池之效率自2.7%提升至8.0%。

    This study investigated the growth of methylammonium lead halide perovskite material by two step solution processing as well as the influence of transport layer and light absorption layer prepared by different procedure on the performance of solar cell.
    First, the growth mechanism of methylammonium lead halide in two step solution processing was investigated. By adjusting the reaction time between methylammonium halide solution and lead iodide thin film, the surface morphology of perovskite thin film could be controlled. And, the concentration of methylammonium halide solution was modified to increase the conversion of lead iodide thin film. As a result, CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite thin films were successfully prepared. And then planar perovskite solar cells were fabricated using CH3NH3PbI3 thin film, where, TiO2 compact layer was deposited on FTO glass by hydrolysis of TiCl4 aqueous solution. An optimized efficiency of 8.3% was obtained at a TiO2 compact layer thickness of 100nm. To further investigate the influence of mesoporous transport structure on the efficiency, mesoporous TiO2 structure, prepared by coating TiO2 nanoparticle colloid solution on compact layer, was employed to fabricate mesoporous perovskite solar cell. The results show that lower porosity of mesoporous structure would restrict the diffusion of methylammonium halide leading to the presence of unreacted lead iodide. Therefore, a higher porosity was employed to increase the conversion of lead iodide. An efficiency of 8.0% was obtained via the use of higher porosity mesoporous structure and the deposition of TiO2 compact layer by the oxidization of Ti thin film instead of the hydrolysis of TiCl4 to efficiently suppress the charge recombination at the interface between compact layer and substrate.

    中文摘要………………………………………………………………I Extended Abstract……………………………………………….II 致謝……………………………………………………………….IX 目錄……………………………………………………………….X 圖目錄…………………………………………………………..XIV 表目錄…………………………………………………………….XVII 第一章 緒論………………………………………………………………….1 1-1前言……………………………………………………………...1 1-2太陽能電池之介紹與分類……………………………………...2 1-3研究動機與目的………………………………………………...4 第二章 理論基礎與文獻回顧……………………………………………….6 2-1 鈣鈦礦太陽能電池之演變……………………………………..6 2-1.1 可撓式鈣鈦礦太陽能電池之現況……………………..10 2-2 鈣鈦礦太陽能電池介紹………………………………………12 2-2.1 工作原理………………………………………………..12 2-2.2 導電基板………………………………………………..15 2-2.3 電子傳輸層……………………………………………..16 2-2.4 鈣鈦礦光吸收層………………………………………..16 2-2.5 電洞傳輸層……………………………………………..21 2-2.6 對電極…………………………………………………..21 2-3 太陽能電池效率之量測與計算……………………………....22 第三章 實驗儀器與方法…………………………………………………...26 3-1 實驗藥品與基板材料…………………………………………26 3-2 實驗流程…………………………………………....…………27 3-2.1基板清潔………………………………………………..28 3-2.2TiO2緻密層之製作…………………………………29 3-2.2A低壓氧電漿前處理………………………………..29 3-2.2B TiCl4水溶液之水解法成長TiO2緻密層…………30 3-2.2C電子束蒸鍍法沉積鈦薄膜………………………..30 3-2.3中孔洞性TiO2薄膜之塗佈……………………………...31 3-2.4鈣鈦礦光吸收層之成長…………………………………31 3-2.5電洞傳輸層之塗佈………………………………………32 3-2.6對電極之沉積……………………………………………33 3-3實驗設備與分析儀器………………………………………….34 3-3.1超音波震盪機……………………………………………34 3-3.2旋轉塗佈機………………………………………………34 3-3.3高溫爐……………………………………………………34 3-3.4氣氛控制手套箱…………………………………………35 3-3.5低壓氧電漿處理系統……………………………………35 3-3.6電子束真空蒸鍍系統……………………………………36 3-3.7熱阻式真空蒸鍍系統……………………………………37 3-3.8太陽光模擬器……………………………………………38 3-3.9紫外光-可見光光譜儀…………..………………………39 3-3.10 X射線繞射分析儀……………………………………..40 3-3.11掃描式電子顯微鏡……………………………………..41 第四章 結果與討論………………………………………………………...42 4-1以二步溶液法成長鈣鈦礦光吸收層之探討………………….42 4-1.1二步溶液法反應條件對鈣鈦礦光吸收層形態之影響…42 4-1.2碘化甲基胺之濃度對鈣鈦礦光吸收層結晶態之影響…48 4-2以水解法成長之TiO2緻密層及其對效率之影響…………….51 4-3鈣鈦礦光吸收層之改良……………………………………….57 4-3.1碘化甲基胺之溶劑對鈣鈦礦光吸收層形態之影響……58 4-3.2氯化甲基胺之摻雜對鈣鈦礦光吸收層形態之影響……60 4-4中孔洞式鈣鈦礦太陽能電池之製作………………………….62 4-4.1 TiO2電子傳輸層厚度對效率之影響…………………...62 4-4.2鈣鈦礦光吸收層厚度與反應程度對效率之影響 ……..64 4-4.3中孔洞性TiO2結構之孔隙度對效率之影響…………...67 4-4.4以鈦薄膜之氧化製作TiO2緻密層對效率之影響……...69 第五章 結論………………………………………………………………...72 參考文獻…………………………………………………………………….75

    [1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, pp. 676-677, 1954
    [2]J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, “Recnet progress in amorphous silicon alloy leading to 13% stable cell efficiency,” in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997, pp. 563-568.
    [3]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
    [4]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. C. Ryu, J. W. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, pp. 1234-1237, 2015
    [5]NREL, “Best research photovoltaic cell efficiency Rev.,” U. D. o. Energy, Ed., ed, 2015.
    [6]N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, Amir-Abbas Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and Henry J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, pp. 3061-3068, 2014.
    [7]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, 1976.
    [8]F.Yang, L. F. Liu, X. Wang, and J. F. Kang, “Performance Improvement of Dye-Sensitized Solar Cell by Optimizing TiO2-Photoanode Structure,” Advanced Materials Research, vol. 906, pp. 55-59, 2014.
    [9]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 8, pp. 583-585, 1998.
    [10]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, pp. 591.
    [11]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, vol. 338, pp. 643-647, 2012.
    [12]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells,” Nano Letters, vol. 13, pp. 1764-1769, 2013.
    [13]V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells,” Nano Letters, vol. 14, pp. 888-893 , 2014.
    [14]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communications, vol. 4, 2013.
    [15]C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddine, and H. J. Bolink, “Flexible high efficiency perovskite solar cells,” Energy & Environmental Science, vol. 7, pp. 994-997, 2014.
    [16]D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar eterojunction structure prepared using room-temperature solution processing techniques,” Nature Photonics, vol. 8, pp. 133-138, 2014.
    [17]M. Lee, Y. H. Jo, D. S. Kim, and Y. S. Jun, “Flexible organo-metal halide perovskite solar cells on a Ti metal substrate,” Journal of Materials Chemistry A, vol. 3, pp, 4129-4133, 2015.
    [18]F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Y. Hu, C. Bronnbauer, S. Langner, E. Spiecker, K. Forberich, and C. J. Brabec, “High-performance semitransparent perovskite solar cells with solution-processed silver nanowires top electrodes,” Nanoscale, vol. 7, pp. 1642-1649, 2014.
    [19]D. Bryant, P. Greenwood, J.Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A Transparent Conductive Adhesive Laminate Electrode for High Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells,” Advanced Materials, vol. 26, pp. 7499-7504, 2014
    [20]S. C. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. W. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy & Environmental Science, vol. 7, pp.2614-2618, 2014.
    [21] M. Z. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395-398, 2013.
    [22]P. Wang, Y. Q. Guo, S. Yuan, C. H. Yan, J. X. Lin, Z. Y. Liu, Y. M. Lu, C. Y. Bai, Q. Lu, S. Y. Dai, C. B. Cai, “Advances in the structure and materials of perovskite solar cells," Research on Chemical Intermediates, 2015
    [23]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, vol. 342, pp. 341-344, 2013.
    [24]H. S. Jung, and N. G. Park, “Perovskite Solar Cells: From Materials to Devices,” Small, vol. 11, pp. 10-25, 2015.
    [25]Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society, vol. 136, pp. 622-625, 2014.
    [26]N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, Amir-Abbas Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and Henry J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, pp. 3061-3068, 2014.
    [27] 陳俊太、許千樹, “Applications of Nanostructures in Organic Polymer
    Solar Cells”, TCIA台灣化學科技產業會刊,第十期,2012 March
    [28]Avaliable:http://pvcdrom.pveducation.org/APPEND/Am0.htm
    [29]R. Sekuler, and R. Blake, Perception. New York: Alfred A. Knopf Inc., 1985.
    [30]Available: http://www.microscopy.ethz.ch/bragg.htm
    [31]Available: http://www.elecfans.com/book/story.php?id=31
    [32]J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol.499, pp. 316-319, 2013.
    [33]A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency,” Nano Letters, vol. 14, pp. 2591-2596, 2014.
    [34]P. Docampo, F. C. Hanusch, N. Giesbrecht, P. Angloher, A. Ivanova, and T. Bein, “Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance,” ACS Applied Materials & Interfaces, vol. 2 , pp. 081508, 2014.

    下載圖示 校內:2017-08-26公開
    校外:2017-08-26公開
    QR CODE