| 研究生: |
呂穎銓 Lyu, Ying-Cyuan |
|---|---|
| 論文名稱: |
以二步溶液法製備鹵化甲基銨鉛鈣鈦礦太陽能電池 Fabrication of Methylammonium Lead Halide Perovskite Solar Cells by Two Step Solution Processing |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 鈣鈦礦 、太陽能電池 、二步溶液法 、二氧化鈦緻密層 、中孔洞結構 |
| 外文關鍵詞: | Perovskite, Solar cells, Two step solution processing, TiO2 compact layer, mesoporous structure |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二步溶液法進行鹵化甲基胺鉛鈣鈦礦材料之成長以及太陽能電池元件之製作,並探討元件內部之TiO2電子傳輸層對效率之影響。
首先探討二步溶液法中鈣鈦礦材料之成長機制。透過改變有機鹽類溶液與無機鹽類薄膜之接觸時間,可控制鈣鈦礦薄膜之表面型態,並透過調整有機鹽類溶液之濃度可控制薄膜之反應程度,成功地製作出CH3NH3PbI3以及CH3NH3PbI3-xClx鈣鈦礦薄膜。接著,利用TiCl4水解法於FTO基板表面成長TiO2緻密層,並搭配前述之CH3NH3PbI3鈣鈦礦薄膜進行平面式鈣鈦礦太陽能電池之製作。在TiO2緻密層厚度為100nm之情況下,可製作出效率為8.3%之電池,然而以水熱法所製作之TiO2緻密層易受人為操作的干擾而降低實驗再現性。
最後利用中孔洞性TiO2結構以製作中孔洞性鈣鈦礦太陽能電池,結果發現中孔洞結構之孔隙度對於電池效率影響甚劇。當孔隙度太小時,有機鹽類難以擴散進入而導致CH3NH3PbI3-xClx薄膜反應不完全。因此改以孔隙度較大之中孔洞結構,並以鈦薄膜氧化法取代水解法製作TiO2緻密層,以進一步地抑制基板暗電流,可使電池之效率自2.7%提升至8.0%。
This study investigated the growth of methylammonium lead halide perovskite material by two step solution processing as well as the influence of transport layer and light absorption layer prepared by different procedure on the performance of solar cell.
First, the growth mechanism of methylammonium lead halide in two step solution processing was investigated. By adjusting the reaction time between methylammonium halide solution and lead iodide thin film, the surface morphology of perovskite thin film could be controlled. And, the concentration of methylammonium halide solution was modified to increase the conversion of lead iodide thin film. As a result, CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite thin films were successfully prepared. And then planar perovskite solar cells were fabricated using CH3NH3PbI3 thin film, where, TiO2 compact layer was deposited on FTO glass by hydrolysis of TiCl4 aqueous solution. An optimized efficiency of 8.3% was obtained at a TiO2 compact layer thickness of 100nm. To further investigate the influence of mesoporous transport structure on the efficiency, mesoporous TiO2 structure, prepared by coating TiO2 nanoparticle colloid solution on compact layer, was employed to fabricate mesoporous perovskite solar cell. The results show that lower porosity of mesoporous structure would restrict the diffusion of methylammonium halide leading to the presence of unreacted lead iodide. Therefore, a higher porosity was employed to increase the conversion of lead iodide. An efficiency of 8.0% was obtained via the use of higher porosity mesoporous structure and the deposition of TiO2 compact layer by the oxidization of Ti thin film instead of the hydrolysis of TiCl4 to efficiently suppress the charge recombination at the interface between compact layer and substrate.
[1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, pp. 676-677, 1954
[2]J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, “Recnet progress in amorphous silicon alloy leading to 13% stable cell efficiency,” in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997, pp. 563-568.
[3]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[4]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. C. Ryu, J. W. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, pp. 1234-1237, 2015
[5]NREL, “Best research photovoltaic cell efficiency Rev.,” U. D. o. Energy, Ed., ed, 2015.
[6]N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, Amir-Abbas Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and Henry J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, pp. 3061-3068, 2014.
[7]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, 1976.
[8]F.Yang, L. F. Liu, X. Wang, and J. F. Kang, “Performance Improvement of Dye-Sensitized Solar Cell by Optimizing TiO2-Photoanode Structure,” Advanced Materials Research, vol. 906, pp. 55-59, 2014.
[9]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 8, pp. 583-585, 1998.
[10]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, pp. 591.
[11]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, vol. 338, pp. 643-647, 2012.
[12]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells,” Nano Letters, vol. 13, pp. 1764-1769, 2013.
[13]V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells,” Nano Letters, vol. 14, pp. 888-893 , 2014.
[14]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communications, vol. 4, 2013.
[15]C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddine, and H. J. Bolink, “Flexible high efficiency perovskite solar cells,” Energy & Environmental Science, vol. 7, pp. 994-997, 2014.
[16]D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar eterojunction structure prepared using room-temperature solution processing techniques,” Nature Photonics, vol. 8, pp. 133-138, 2014.
[17]M. Lee, Y. H. Jo, D. S. Kim, and Y. S. Jun, “Flexible organo-metal halide perovskite solar cells on a Ti metal substrate,” Journal of Materials Chemistry A, vol. 3, pp, 4129-4133, 2015.
[18]F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Y. Hu, C. Bronnbauer, S. Langner, E. Spiecker, K. Forberich, and C. J. Brabec, “High-performance semitransparent perovskite solar cells with solution-processed silver nanowires top electrodes,” Nanoscale, vol. 7, pp. 1642-1649, 2014.
[19]D. Bryant, P. Greenwood, J.Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A Transparent Conductive Adhesive Laminate Electrode for High Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells,” Advanced Materials, vol. 26, pp. 7499-7504, 2014
[20]S. C. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. W. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy & Environmental Science, vol. 7, pp.2614-2618, 2014.
[21] M. Z. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395-398, 2013.
[22]P. Wang, Y. Q. Guo, S. Yuan, C. H. Yan, J. X. Lin, Z. Y. Liu, Y. M. Lu, C. Y. Bai, Q. Lu, S. Y. Dai, C. B. Cai, “Advances in the structure and materials of perovskite solar cells," Research on Chemical Intermediates, 2015
[23]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, vol. 342, pp. 341-344, 2013.
[24]H. S. Jung, and N. G. Park, “Perovskite Solar Cells: From Materials to Devices,” Small, vol. 11, pp. 10-25, 2015.
[25]Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society, vol. 136, pp. 622-625, 2014.
[26]N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, Amir-Abbas Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and Henry J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, pp. 3061-3068, 2014.
[27] 陳俊太、許千樹, “Applications of Nanostructures in Organic Polymer
Solar Cells”, TCIA台灣化學科技產業會刊,第十期,2012 March
[28]Avaliable:http://pvcdrom.pveducation.org/APPEND/Am0.htm
[29]R. Sekuler, and R. Blake, Perception. New York: Alfred A. Knopf Inc., 1985.
[30]Available: http://www.microscopy.ethz.ch/bragg.htm
[31]Available: http://www.elecfans.com/book/story.php?id=31
[32]J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol.499, pp. 316-319, 2013.
[33]A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency,” Nano Letters, vol. 14, pp. 2591-2596, 2014.
[34]P. Docampo, F. C. Hanusch, N. Giesbrecht, P. Angloher, A. Ivanova, and T. Bein, “Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance,” ACS Applied Materials & Interfaces, vol. 2 , pp. 081508, 2014.