| 研究生: |
林筱嵐 Lin, Hsiao-Lan |
|---|---|
| 論文名稱: |
噴墨印刷製程熔融無鉛銲錫微液滴噴覆於基板行為之數值模擬研究及其實驗驗證 The Numerical Simulation of Micro-droplet Deposition of Molten Lead-free Solder for Inkjet Printing Process and Its Experimental Verification |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 數值模擬 、噴墨製程 、Sn3.0Ag0.5Cu合金 、微液滴 、微導線 |
| 外文關鍵詞: | Numerical simulation, Inkjet process, Sn3.0Ag0.5Cu alloy, Micro-droplet, Micro- conductive line |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微液滴噴墨技術是一非接觸式的直接製造方法,透過電腦輔助控制,可將材料直接噴覆於特定位置點上。由於液滴的精微尺寸,且其噴覆於基板後之凝固過程極為短暫,在實驗中無法清楚觀察,故以數值方法模擬微液滴噴覆於基板後之行為,將利於觀察解析各種微液滴在基板上之相關現象。
本研究主要是將數值模擬技術應用於熔融無鉛銲錫微液滴噴覆於基板上之行為探討,藉由實驗比對,找出適當的界面熱傳係數。利用噴墨技術噴印Sn3.0Ag0.5Cu合金材料噴印於鍍金玻璃基板上,並使用商用軟體Flow-3D模擬微液滴噴覆於基板上之流動及熱傳現象,以預測不同參數條件下之導線型態及線寬。
由模擬結果發現,微液滴與基板間的界面熱傳係數,隨液滴飛行速度的增加有增大的趨勢,而界面熱傳係數增大,將適時停止微液滴擴張和回彈,使擴散因子不隨液滴飛行速度增大有太大的變化,對銲錫凝固後的尺寸造成影響。此外,在導線的噴製上,由於多顆微液滴之間有相互吸引拉扯的作用,影響微導線凝固後之型態及線寬。較大的液滴間距或較高的噴覆頻率使線寬縮減。當液滴間距為140 μm,導線出現一斷裂不連續處。當噴覆頻率為1/70 1/ μs,導線出現一明顯的頸縮現象。
Drop-on-demand inkjet printing technology was a direct droplet deposition method. Materials can be deposited on the demand positions. Experimental investigation of the droplet solidification process is quite challenging due to the very short time and length scales involved. Therefore, a numerical modeling is used in order to observe the phenomena occurring during the droplet impaction on the substrate.
The research is aimed at applying the numerical modeling on the micro-droplet deposition of molten lead-free solder, and experiments were conducted to determine the interfacial heat transfer coefficients between solders and substrate. Sn3.0Ag0.5Cu alloys were deposited on a gold-coating glass substrate by inkjet printing technology, and commercial software Flow-3D was adopted to simulate the fluid dynamics and thermal transients of molten solders after deposited on the substrate in order to predict the morphology and line width of micro-conductive line.
The simulated results show the interfacial heat transfer coefficients between solders and substrate for various velocities increase with increasing velocity, and the interfacial heat transfer coefficient would effect the spead factors of solder. For micro-conductive line formation, the aggregation of multi-droplet influence the morphology and line width of micro-conductive line. Large step sizes or high deposition frequencies would decrease the line width. The micro-conductive line broke when step size was 140 μm and necked when the deposition frequency was 1/70 1/ μs.
[1]. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits”, Science, 290 (2000) 2123-2126.
[2]. V. Marin, E. Holder, M. M. Wienk, E. Tekin, D. Kozodaev and Ulrich S. Schubert, “Ink-jet printing of electron donor/acceptor blends: Towards bulk heterojunction solar cells”, Macromolecular Rapid Communications, 26 (2005) 319-324.
[3]. C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec, “High photovoltaic performance of inkjet printed polymer: Fullerence blends”, Advanced Materials, 19 (2007) 3973-3978.
[4]. H. Ottevaere, B. Volckaerts, J.Lamprecht, J. Schwider, A. Hermance, I. Veretennicoff and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization”, Journal of Optics A: Pure and Applied Optics, 4 (2002) S22-S28.
[5]. H. Y. Son, J. W. Nah and K. W. Paik, “Formation of Pb/63Sn solder bumps using a solder droplet jetting method”, IEEE Transactions on Electronics Packaging Manufacturing, 28 (2005) 274-281.
[6]. D. B. Wallace and D. J. Hayes, ”Solder Jet Technology Update”, Proceedings, ISHM’97, (1997) 1-4.
[7]. N. C. Lee, “Getting ready for lead free solders”, Surface Mount Technology, 26 (1997) 65-73.
[8]. A. U. Chen, and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production”, Physi. Fluids, 14 (2002) 1-4.
[9]. P. K. Notz, A. U. Chen, and O. A. Basaran, “Satellite drops: unexpected dynamics and change of scaling during pinch-off”, Physi. Fluids, 13 (2001) 549-552.
[10]. D. B. Bogy, and F. E. Talke, “Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices”, IBM J. Res. Dev., 28 (1984) 314-321.
[11]. H. H. Chou, M. H. Tsai, C. W. Chou, W. S. Hwang, and H. L. Chen, “Experimental investigation of drop formation by ink jet printing”, MCSP VII, (2007).
[12]. M. H. Tsai, W. S. Hwang, and H. H. Chou, “The micro-droplet behavior of a molten lead-free solder in an inkjet printing process”, J. Micromech. Microeng., 19 (2009) 1-10.
[13]. S. D. Aziz, and S. Chandra, “Impact, recoil and splashing of molten metal droplets”, Int. J. Heat Mass Tran., 43 (2000) 2841-2857.
[14]. D. W. Tian, Y. H. Tian, C. Q. Wang and C. J. Hang, ”Three-dimensional modelling of solder droplet impact onto a groove”, J. Phys. D: Appl. Phys, 41 (2008) 1-12.
[15]. J. A. Lewis and G. M. Gratson, “Direct writing in three dimensions”, Materials Today, 7 (2008) 32-39.
[16]. 陳錦泰,噴墨頭驅動技術研討會,電子工業委員會,計畫編號00-11-10,2000年。
[17]. D. J. Hayes, W. R. Cox and D. B. Wallace, ”Printing System for MEMS Packaging”, Proceedings, SPIE Conference on Micromachining and Microfabrication, (2001) 1-9.
[18]. K. Yamaguchi, K. Sakai, T. Yamanaka and T. Hirayama, “Generation of three-dimensional micro structure using metal jet”, Precision Engineering, 24 (2000) 2-8.
[19]. 葉吉田,噴墨列印技術在電子工業之應用,電子與材料,第二期,1999年,52-55。
[20]. 張棋榕,以噴墨方法製作彩色濾光片的利基與挑戰,化工資訊月刊,2001年。
[21]. 呂志平.周柏甫.胡紀平,應用熱氣泡式噴墨法開發PLED全彩顯示器之製程技術,工業材料雜誌,第194 期,1993年,140-146。
[22]. D. Wallace, H.J. Trost and U. Eichenlaub, "Multi-fluid Ink-Jet Array for Manufacturing of Chip-Based Microarray Systems", Second International Conference on Microreaction Technology, (1998).
[23]. T. Goldmann and J. S. Gonzalez, "DNA-Printing: Utilization of a Standard Inkjet Printer for the Transfer of Nucleic Acids to Solid Supports", J. Biochem. Biophys. Methods, 42 (2000) 105-110.
[24]. D. SimT. Ono and M. Esashi, “Development of ink-jet head for DNA”, T.IEE Japan, 121 C (2001).
[25]. T. Laurell, L. Wallman and J. Nilsson, ” Design and development of a silicon micro fabrication flow-through dispenser for on-line picolitre sample handling, ” J. Micromesh. Microeng, 9 (1999) 369-376.
[26]. D. Wallac, “Ink-jet based fluid microdispensing in biochemical applications” , Lab. Automation News 1, 5 (1996) 6-9.
[27]. A.V. Lemmo, J.T. Fisher, H. M. Geysen and D. J. Rose﹐“Characterization of an inkjet cheminal microdispenser for combinatorial library synthesis”, Anal. Chem, 69 (1997) 543-541.
[28]. J. Nilsson and P. Szecsi, “A flow-through microsampling device applied to an ion exchange chromtatography system, ” Journal of Biochem. Biophys. Methods, 27 (1993) 181-190.
[29]. S. P. Swierkowski, “Micromachined chemical jet dispensor”, U.S Patent. No.5877580, (1999).
[30]. J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Roger, “High-resolution electrohydrodynamic jet printing”, Nature Materials, 6 (2007) 782-789.
[31]. 肯特,噴墨式和熱列印式印表機技術概況,新電子,第191期,2002年。
[32]. D. B. Bogy and F. E. Talke, “Experimental and theoretical study of wave propagation phenomena in drop-on-demand jet devices”, Biomaterials, 29 (2008) 193-203.
[33]. A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production”, Physics of Fluids, 14 (2002) 1.
[34]. H. Dong and W. W. Carr, “An experiment study of drop-on-demand drop formation”, Physics of Fluids, 18 (2006) 072102.1-072102.16.
[35]. E. R. Lee, “Microdrop generation”, CRC Press LLC, (2003) 59-67.
[36]. M. H. Tsai, “Study of micro-froplet behavior and printing quality by piezoelectric ink-jet printing method”, National Cheng Kung University Material Science and Engineering, (2010) 101.
[37]. H. H. Chou, “Application of silver nitrate water-based solution and inkjet printing in the fabrication of 1-D and 2-D electronically conductive structures”, National Cheng Kung University Material Science and Engineering, (2008) 81-82.
[38]. W. Wang, F. Hong and H. Qiu, ”Prediction of solder bump formation in solder jet packaging process”, IEEE Transactions on Conponents and Package Technologies, 29 (2006) 486-493.
[39]. S. Haferl and D. Poulikakos, ”Transport and solidification phenomena in molten microdroplet pileup”, Journal of Applied Physics, 92 (2002) 1675-1689.
[40]. M. D. Croucher and M. L. Hair, “Design criteria and future directions in inkjet ink technology”, Industrial & Engineering Chemistry Research, 28 (1989) 1712-1718.
[41]. B. J. D. Gans, P. C. Duinevld and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments”, Advanced Materials, 16 (2004) 203-213.
[42]. R. E. Saunders, J. E. Gough and B. Derby, “Delivery of human fibroblast cell by piezoelectric drop-on-demand inkjet printing”, Biomaterials, 29 (2008) 193-203.
[43]. A. F. J. Baggerman and D. Schwarzbach, “Solder-jetted eutectic PbSn bumps for flip-chip”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 21 (1998) 371-381.
[44]. S. K. Kang, P. A. Lauro, D. Y. Shih, D. W. Henderson and K. J. Puttlitz, “Microstructure and mechanical properties of lead-free solders and solder joints used in microelecronic applications”, IBM Journal of Research and Development, 49 (2005) 607-620.
[45]. J. S. Hwang, “Implementing Lead-Free Electronics”, New York: McGraw-Hill, 69 (2004).
[46]. C. C. Yang and S. Li, “Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals”, Physical Review B, 75 (2007) 165413.
[47]. S. H. Ko, J. Chung, H. Pan, C. P. Grigoropoulos and D. Poulikakos, “Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing”, Sensors and Actuators, A: Physical, 134 (2006) 161-168.
[48]. F. Xue, Z. Liu, Y. Su and K. Varahramyan, “Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors”, Microelecrtonic Engineering, 83 (2006) 298-302.
[49]. Z. Liu, Y. Su and K. Varahramyan, “Inkjet printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers”, Thin Solid Films, 478 (2005) 275-279.
[50]. C. M. Hong and S. Wagner, “Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors”, IEEE Electron Device Letters, 21 (2000) 384-386.
[51]. H. Dong, W. W. Carr and J. F. Morris, ”An experimental study of drop-on-demand drop formation”, Physics of Fluids, 18 (2006) 072102.
[52]. H. Dong, W. W. Carr and J. F. Morris, ”Visualization of drop-on-demand inkjet: Drop formation and deposition”, Review of Scientific Instruments, 77 (2006) 085101.
[53]. M. H. Tsai, W. S. Hwang, H. H. Chou and P. H. Hsieh, “Effect of pulse voltage on inkjet printing of a silver nanopowder suspension”, Nanotechnology, 19 (2008) 335304.
[54]. R. Rioboo, M. Marengo and C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces”, Experiments in Fluids, 33 (2002) 112-124.
[55]. T. Lim, S. Han, J. Chung, J. T. Chung, S. Ko and C. P. Grigoropoulos, “Experimental study on spreading and evaporation of inkjet printed pico-liter drop on a heated substrate”, International Journal of Heat and Mass Transfer, 52 (2009) 431-441.
[56]. C. W. Hirt, B. D. Nichols, R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, Technology Report LA-8355, Los Alamos Scientific Laboratory, (1980).
[57]. C. W. Hirt, B. D. Nichols, ”Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, 39 (1981) 201-225.
[58]. D. W. Tian, C. Q. Wang and Y. H. Tian, “Effect of solidification on solder bump formation in solder jet process: simulation and experiment”, Transaction of Nonferrous Metals Society of China, 18 (2008) 1201-1208.
[59]. G. A. Rinne, J. D. Walling, and J. D. Mis, “A Minimal CSP”, IEEE Transactions on Advanced Packaging, 23 (2000) 206-211.
校內:2013-08-22公開