簡易檢索 / 詳目顯示

研究生: 陳姿秀
Chen, Zih-Siou
論文名稱: 基於邊緣權重資訊的感知式銳利度強化演算法
A Perceptual Sharpness Enhancement Algorithm Based on Edge-Weighted Information
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 46
中文關鍵詞: 邊緣資訊對比強化梯度強化直方圖強化
外文關鍵詞: edge information, contrast enhancement, gradient enhancement, histogram enhancement
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文的目的是提升影像的銳度,使其看起來像數位像機的照片,或者更好。有些濾波器會過分強化處理,使得圖像看起來不自然。在這篇論文中,我們提出了一個基於感知式的演算法來明顯的表現細節紋理,銳化整體影像。然後利用原始影像的邊緣資訊將其合併。
    本演算法分兩個部分:梯度強化與直方圖強化。首先,在梯度強化部分,區域的銳度強化濾波器試著結合人眼視覺系統的概念,來得到更好的感知結果。這個銳度強化濾波器最重要的特點就是能完善的表現細節紋理並抵抗雜訊。再來,在直方圖強化部分,藉由加權式直方圖等化機制來廣域的調整整體直方圖,這個機制最大的能力就是藉由提升整體影像的對比來達到銳化邊緣的目的。我們提出一個基於邊緣資訊的方法來結合這兩個部分。實驗結果顯示,經過我們的演算法後詳細的細節紋理可以容易地被觀察到,整體影像看起來不僅更銳利且自然。

    The goal of proposed algorithm is to enhance the images like the digital camera photos or, better. Some enhancement filters process too excessive that makes image look unnatural. In this thesis, we propose an algorithm to represent obviously the detailed textures and sharpen the overall image based on perceptual approach. Then the sharpened images are merged by the edge information of original image.
    The proposed algorithm consists of two stages: gradient and histogram enhancement. First, in the gradient stage, the local sharpness filter is tried integrating the concept of Human Visual System (HVS) for better perceptual results. The strongest resist of noise and the well presentation of the detailed textures are the most significant features of this filter. Second, in the histogram stage, the global histogram is adjusted by a histogram–based weighting mechanism. The great ability of this mechanism is sharpening the edge by enhancing the contrast of whole image. Therefore, we propose an approach based on edge information to combine these two stages.
    The experimental results show that the detailed textures can be easily observed .The whole image looks not only more sharp but also natural after applying our algorithm.

    Contents Contents i List of Tables iii List of Figures iv Chapter 1 Introduction 1 Chapter 2 Background 2 2.1 Human Visual System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Light Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Brightness Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Weber-Fechner Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2 Gradient Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Sharpening Spatial Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Sobel Filter . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Weighted Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2.4 Quadratic Weighted Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.3 Histogram Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.3.2 Histogram Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Weighted Thresholded Histogram Equalization . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 The Proposed Algorithm 14 3.1 Gradient Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.1 The Analysis of Quadratic Weighted Median Filter . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 The Proposed Method: Clipped Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Histogram Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 The Analysis of Weighted Thresholded Histogram Equalization . . . . . . . . . . . 22 3.3 The Combination of Gradient and Histogram Enhancement . . . . . . . . . . . . . . 24 3.3.1 The Opinions of Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 The Proposed Method: Edge-Weighted Contrast Enhancement . . . . . . . . . . . . . .24 Chapter 4 Simulate Results 27 4.1 Comparison with Other Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 5 Conclusion and Future Work 40 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 REFERENCE 42 List of Tables 4.1 The Average Luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 The Standard Deviation of Luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 List of Figures 2.1 The distribution of rods and cones across the retina . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Threshold versus intensity (TVI) functions of rods and cones . . . . . . . . . . . . . . . . . . . 4 2.3 Block diagram of unsharp masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 3×3 Laplacian Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Sobel Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.6 WTHE control curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Block diagram of the proposed enhancement method . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Structure of QWMF unsharp masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Positive and negative-slope edge enhancement with QWMF . . . . . . . . . . . . . . . . . . . 18 3.4 Example of overshoot and undershoot effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Flowchart of clipped median filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Overshoot and undershoot detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.7 Compared histogram of WTHE and brightness shifted result . . . . . . . . . . . . . . . . . . . 23 3.8 Flowchart of edge-weighted contrast enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 Different sharpness enhancement result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Different sharpness enhancement result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Different sharpness enhancement result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 A part of magnified Fig.4.1 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 Compared with [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 Compared with [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.7 Simulation results of different building images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.8 Simulation results of different landscape images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.9 Simulation results of different object images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    REFERENCE

    [1] Aditi Majumder, Sandy Irani, “Contrast Enhancement of Images using Human Contrast Sensitivity”, Proceedings of the 3rd symposium on Applied perception in graphics and visualization pp69–76 2006.
    [2] G. Arce. A general weighted median filter structure admitting negative weights. Signal Processing, IEEE Transactions on, 46(12):3195--3205, Dec 1998.
    [3] T. Aysal and K. Barner. Quadratic weighted median filters for edge enhancement of noisy images. IEEE Transactions on Image Processing, 2003.
    [4] M. Cadik, M. Wimmer, L. Neumann, A. Artusi, “Image Attributes and Quality for Evaluation of Tone Mapping Operators”, Proceedings of Pacific Graphics 2006, 14th Pacific Conference on Computer Graphics and Applications, pages 35-44. October 2006.
    [5] J. Caviedes and S. Gurbuz. No-reference sharpness metric based on local edge kurtosis. Image Processing. 2002. Proceedings. 2002 International Conference on, 3:III–53–III–56 vol.3, 2002.
    [6] Soong-Der Chen, Abd. Rahman Ramli, “Preserving brightness in histogram equalization based contrast enhancement techniques”, Digital Signal Processing, vol. 14, pp.413–428J, 2004.
    [7] Soong-Der Chen, Abd. Rahman Ramli, “Minimum Mean Brightness Error Bi-Histogram Equalization in Contrast Enhancement”, IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, NOVEMBER 2003.
    [8] F. Drago, K. Myszkowski, T. Annen and N. Chiba, “Adaptive Logarithmic Mapping for Displaying High Contrast Scenes, In Proceedings of eurographics 2003, 22, 3, 419-426.
    [9] R. Ferzli and L. Karam. A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb). Image Processing, IEEE Transactions on, 18(4):717–728, April 2009.
    [10] M. Fischer, J. Paredes, and G. Arce. Weighted median image sharpeners for the world wide web. Image Processing, IEEE Transactions on, 11(7):717–727, Jul 2002.
    [11] G. M. Johnson and M.D. Fairchild, Sharpness Rules, IS&T/SID 8th Color Imaging Conference, Scottsdale, 24-30, 2000.
    [12] Y. Kim “Quantized Bi-Histogram Equalization”, Proceedings of the 1997 IEEE International Conference on Acoustics, Spe ech, and Signal Processing (ICASSP '97) -Volume 4 - Volume 4.
    [13] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi. Perceptual Blur and Ringing Metrics: Application to JPEG2000. Signal Processing : Image Communication, 19(2):163--172, 2004.
    [14] Mukhopadhyay and B. Chanda, “A multiscale morphological approach to local contrast enhancement”, Signal Processing, vol. 80, pp. 685-696, 2000.
    [15] R. Pan and X. Meng. A method of local enhancement based on fuzzy set theory. Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 3:1751–1753 vol.3, 2000.
    [16] P. Rieder and G. Scheffler. New concepts on denoising and sharpening of video signals. Consumer Electronics, IEEE Transactions on, 47(3):666-671, Aug 2001.
    [17] D. Shaked and I. Tastl. Sharpness measure: towards automatic image enhancement.Image Processing, 2005. ICIP 2005. IEEE International Conference on, 1:I–937–40, Sept. 2005.
    [18] S. C. T. Jen-Hao Cheng. A novel high dynamic range compression algorithm with detail refinement. Master's thesis, National Cheng Kung University,Tainan, Taiwan, R.O.C., 2005.
    [19] Shen-Chuan Tai, Yi-Ying Chang and Jen-Hao Cheng, “A Novel High Dynamic Range Compression with Detail Refinement”, National Computer Symposium 2005, (NCS'05)
    [20] Shen-Chuan Tai, Yi-Ying Chang, and Li-Wei Chen, “An efficient local region enhanced algorithm” 1st Intelligent Living Technology (ILT), p.749 p.756 2006.
    [21] S. C. T. Nai-Ching Wang. A method for automatic image contrast enhancement based on intensity-pair distribution. Master's thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2008.
    [22] S. C. T. Yi-Ying Chang, Kang-Ming Li, Ting-Chou Tsai. Contrast Enhancement method based on Average Luminance with Weighted Histogram Equalization. The Fifth International Conference on Information Assurance and Security (IAS-2009) p555-p558August 18-20, 2009, Xi’an, China. ISBN:978-0-7695-3744-3.
    [23] S. C. T. Kang-Ming Li. A sharpness enhancement algorithm with adaptive acutance compensation. Master's thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2009.
    [24] A. Taguchi, T. Kimura, and M. Meguro. Sharpening a noisy image by using fuzzy rules. Nonlinear Image Processing IX, 3304(1):144–152, 1998.
    [25] J. A. P. Tegenbosch, P. M. Hofman, and M. K. Bosma. Improving nonlinear up-scaling by adapting to the local edge orientation. Visual Communications -+-9450a21nd Image Processing 2004, 5308(1):1181--1190, 2004.
    [26] Jack Tumblin and Greg. Turk, “LCIS: A boundary hierarchy for detail preserving contrast reduction.” In Siggraph 1999, Computer Graphics Proceedings, Addison Wesley Longman, Los Angeles, A. Rockwood, Ed., Annual Conference Series, 83-93.
    [27] Jianhong (Jackie) Shen and Yoon-Mo Jung (2006), Appl. Math. Optim., 53(3):331-358, Weberized Mumford-Shah model with Bose-Einstein photon noise
    [28] Jianhong (Jackie) Shen (2003), Physica D: Nonlinear Phenomena, 175(3/4):241-251, On the foundations of vision modeling I. Weber's law and Weberized TV (total variation) restoration.
    [29] S. Thurnhofer and S. Mitra. A general framework for quadratic volterra filters for edge enhancement. Image Processing, IEEE Transactions on, 5(6):950--963, Jun 1996.
    [30] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, Eero P. Simoncelli, “'Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image processing, vol. 13, no. 4, April 2004.
    [31] Qing Wang; Ward, R.K. “Fast Image/Video Contrast Enhancement Based on Weighted Thresholded Histogram Equalization”, Consumer Electronics, IEEE Transactions on Volume 53, Issue 2, May 2007 Page(s):757 – 764.
    [32] M. Wirth and D. Nikitenko. Applications of fuzzy morphology to contrast enhancement. Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American, pages 355–360, June 2005.
    [33] P. Whittle. Increments and decrements: Luminance discrimination. VisionResearch, 26(10):1677 – 1691, 1986.
    [34] H.R. Wu, K.R. Rao, “Digital Video Image Quality and Perceptual Coding”, Taylor & Francis Group, LLC, ISBN0-8247-2777-0 2006.
    [35] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters: a tutorial. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 43(3):157--192, Mar 1996.
    [36] Yuanzhen Li, Lavanya Sharan and Edward H. Adelson, “Compressing and Companding High Dynamic Range Images with Subband Architectures”, ACM Transactions on Graphics (TOG), Volume 24, Issue 3, pp836 – 844, Proceedings of ACM SIGGRAPH 2005.
    [37] S. Zhen-gang, G. Li-qun, and W. Kun. A novel approach to image enhancement and thresholding based on fuzzy theory. Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on, pages 2201–2205, May 2007.

    下載圖示 校內:2015-08-12公開
    校外:2015-08-12公開
    QR CODE