簡易檢索 / 詳目顯示

研究生: 吳楷浚
Wu, Kai-Chun
論文名稱: 地球重返任務衛星姿態控制系統模擬與任務分析
Earth Re-entry CubeSat Mission Attitude Control Simulation and Mission Analysis
指導教授: 苗君易
Miau, Jiun-Jih
共同指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 86
中文關鍵詞: 立方衛星軟體迴路模擬姿態估測姿態控制
外文關鍵詞: CubeSat, Software-in-the-loop, Attitude determination, Attitude control
相關次數: 點閱:121下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 立方衛星為近幾年非常熱門的議題,也已經有許多成功的任務,所以許多人開始思考利用立方衛星執行新型態的任務,地球重返任務則為其中一種,這種任務很大的意義在於科學量測,使我們對大氣層的垂直分布可以更加掌握。地球重返任務遇到的挑戰包含: 如何脫離軌道,重返時的高溫以及姿態穩定, 而本篇研究著重於因應這些挑戰所帶來的限制,也就是地球重返任務的立方衛星在軌道上的姿態控制系統的設計,模擬與分析,這其中當然也考量到用於重返時的姿態穩定外型,對於在軌道
    上操作的影響,以及脫離軌道的時間以及軌道估算,而地球重返任務立方衛星本身的熱防護,也限制了衛星姿態控制的感測器選用,因此如何利用僅有的感測器完成任務也是一項挑戰。本研究利MATLAB/Simulink 建立模擬環境也就是軟體迴路模擬,並決定出從衛星釋放初期的減滾(Detumbling),到三軸穩定之姿態控制流程與策略,其中包含控制法則的選用以及姿態估測器的搭配選擇,並建立明確的判斷條件。軌道與脫離軌道的估算則會利用另一個獨立的程式計算與分析, 並考量配合姿態控制的結果。
    軟體迴路模擬完成大部分的模擬環境建置,讓環境接近真實狀況,包含動態方程式,軌道估算,感測器模型,控制器以及擾動分析,由於感測器的選擇上受到限制所以在估測上會有比較大的挑戰,本研究將嘗試並比較不同估測方法的效能,並且在模擬加入感測器的特性,最後將姿態估測結果直接回饋給控制器,觀察相互搭配的影響。經過模擬分析並比較相關的廠商資料以及論文,決定出穩定及控制衛星的策略流程與控制法則。而脫離軌道的估算也會是一個重點,由於較不對稱的外型在姿態
    改變上會影響軌道的脫離,所以要與姿態模擬的結果相互搭配。整個軟體迴路模擬完善後可以提供更完整的任務分析以及控制器設計,同時也可以讓衛星操作人員更熟悉可能遇到的狀況。

    With the popular development of CubeSats, there are more and more different applications for them, Re-entry mission is one of the critical parts of earth observation. Re-entry CubeSat can carry the scientific equipment which can record some measurements during Re-entry phase in order to increase the knowledge of the properties of atmosphere. This research is referred to this kind of mission approach with a 3U CubeSat. In order to reach the objective, attitude determination and control subsystem is required to perform attitude stabilization and pointing control.

    This research describes the mission analysis and development of attitude determination and control subsystem for the CubeSat, with emphasis on the operation and control strategy. Moreover, the attitude determination and control subsystem will not be activated during the re-entry since the ADCS hardware cannot sustain under such extreme scenario like supersonic speed and extremely high temperature. But the design of hardware and structure still affect the satellite operation during orbital cruise. Because of the thermal consideration, the use of the sensors are limited. Moreover, the design of the deployable solar panels, which are responsible for performing aerodynamic stability for re-entry phase, will also be investigated, in particular, the deployment strategy is assessed.


    Software-in-the-loop simulation is used for mission design and performance analysis. A simulation software has been built up based on MATLAB/Simulink, which contains the dynamic model of the satellite, sensor/actuator model, environment model, attitude controller and estimator. With the design of simulation software, we can get several results from different combination of controller and estimator. The performance of the results can help the designer to define the operation strategy and identify the threshold of operation. Also, the software can simulate the error setting to observe the behavior of satellite, this can help ground operation to identify the possible error condition in real mission.

    The simulation of de-orbit scenario will take attitude control into consideration, it can estimate the orbital lifetime to see whether it meets the mission requirement or not. In conclusion, the simulation tool not only helps us to design ADCS and makes the mission planning, but also provides an insight into the operating strategy.

    摘要 i Abstract ii Acknowledgements iv Table of Contents v List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Background and Objective 1 1.2. Literature Study 3 1.3. Thesis Overview 5 Chapter 2. Satellite and Environment 6 2.1. Satellite Configuration 6 2.1.1. System Overview 8 2.2. ADCS Requirement and Hardware 9 2.2.1. ADCS Design Requirement and Recommendation 10 2.2.2. ADCS Hardware 10 2.3. Sensor and Actuator Modelling 14 2.3.1. MEMS gyroscope 14 2.3.2. Magnetometer 15 2.3.3. Magnetorquer 15 2.3.4. Momentum Wheel 17 2.4. Attitude Definitions 17 2.4.1. Attitude Representations 18 2.4.2. Reference Frames 20 2.5. Equation of Motion 22 2.5.1. Kinematic Equation 23 2.5.2. Dynamic Equation 23 2.5.3. Solar Panel Deployment 24 2.6. Space Environment 26 2.6.1. Magnetic Field Model 26 2.6.2. Atmosphere Model and Aerodynamic Torque 27 2.6.3. Gravity-gradient Torque 29 2.7. Orbit 29 2.7.1. Orbit Element 30 2.7.2. Aerodynamic De-orbit 32 Chapter 3. ADCS Theory and Implementation In Simulation 33 3.1. Attitude Control 33 3.1.1. B-dot Control 34 3.1.2. Y-spin Control 37 3.1.3. Wheel Pitch Control 39 3.1.4. Cross Product and Momentum Dumping Control Law 40 3.2. Attitude Determination 43 3.2.1. Extended Kalman Filter Implementation 44 3.2.2. Magnetometer Rate Filter 49 Chapter 4. Simulation Result and Analysis 53 4.1. Software In the Loop Simulation Program 53 4.1.1. Magnetic Related Hardware Active Control 54 4.2. Scenario Simulation Result 55 4.2.1. High Initial Rate Detumbling 56 4.2.2. Detumbling Control 57 4.2.3. Y-momentum Initial Mode 61 4.2.4. Y-momentum Mode 63 4.3. Disturbance Analysis 67 4.4. Solar Panel Deployment 68 4.4.1. Deployment Torque Impact 68 4.4.2. Pitch Attitude Control after Deployment 69 4.5. Orbit Lifetime Estimation 72 Chapter 5. Operation Strategy 74 5.1. Initial Condition Check 74 5.2. Detumbling Process 75 5.3. Y-momentum Mode 77 Chapter 6. Conclusion and Future Work 81 6.1. Discussion 81 6.2. Future Research 82 References 83

    [1] H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: A new Generation of Picosatellite for Education and Industry Low-Cost Space Experimenta- tion,” AIAA/USU Conf. Small Satell., pp. 1–19, 2000.
    [2] CalPoly, Cubesat design specification (CDS). 2014.
    [3] R. Hevner, W. Holemans, J. Puig-Suari, and R. Twiggs, “An Advanced Standard for CubeSats,” 25thAnnual AIAA/USU Conf. Small Satell., pp. 1–12, 2011.
    [4] D. T. Gerhardt and S. E. Palo, “Passive Magnetic Attitude Control for CubeSat Space- craft,” Small Satell. Conf., p. 10, 2010.
    [5] S.-H. Wu and J.-C. Juang, “Operating Strategy in PHOENIX’s Attitude Determination and Control Subsystem,” 2016.
    [6] C. Arduini and P. Baiocco, “Active Magnetic Damping Attitude Control for Gravity Gradient Stabilized Spacecraft,” J. Guid. Control. Dyn., vol. 20, no. 1, pp. 117–122, 1997.
    [7] W. H. Steyn, Y. Hashida, and V. Lappas, “An Attitude Control System and Commis- sioning Results of the SNAP-1 Nanosatellite,” 14th AIAA/USU Conf. Small Satell., 2000.
    [8] W. H. Steyn and M. A. Kearney, “An attitude control system for ZA-aerosat subject to significant aerodynamic disturbances,” IFAC Proc. Vol., vol. 19, no. January 2014, pp. 7929–7934, 2014.
    [9] M. L. Gargasz, “Optimal Spacecraft Attitude Control Using Aerodynamic Torques,” 2007.
    [10] J. Auret, Design of an Aerodynamic Attitude Control System for a CubeSat. PhD thesis, 2012.
    [11] W. Flatley, W. Morgenstern, A. Reth, and F. Bauer, “A B-Dot Acquisition Controller for the RADARSAT Spacecraft,” pp. 79–90, 1996.
    [12] J. Gerber, A 3-Axis Attitude Control System Hardware Design for a CubeSat. PhD thesis, 2014.
    [13] W. Steyn, “An attitude control system for SumbandilaSAT an earth observation satel- lite,” Eur. Sp. Agency, (Special Publ. ESA SPESA SP, no. 660 SP, pp. 1–12, 2008.
    [14] T. E. Humphreys, M. L. Psiaki, E. M. Klatt, S. P. Powell, and P. M. Kintner, “Magnetometer-based Attitude and Rate Estimation for a Spacecraft with Wire Booms,” J. Guid. Control. Dyn., vol. 28, no. 4, pp. 584–593, 2005.
    [15] H. Ma and S. Xu, “Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft,” Acta Astronaut., vol. 102, pp. 89–102, 2014.

    [16] Vina and J.-C. Juang, “Attitude Determination and Control Subsystem for PHOENIX CubeSat : Design , Implementation , and Testing,” 2015.
    [17] T.-y. Lin and J.-c. Juang, “Design and Verification of the Operating Procedure of Atti- tude Determination and Control Subsystem of a Nanosatellite,” 2014.
    [18] Lourens Visagie, “QB50 ADCS Commissioning Manual,” tech. rep., 2015.
    [19] NanoRacks LLC, “NV NanoRacks CubeSat Deployer (NRCSD) Interface Control Doc- ument,” tech. rep., 2013.
    [20] S.-h. Wu and J.-c. Juang, “Pre-Mission Analysis and Architecture Design of Electrical Power Subsystem for 2U CubeSat,” 10th IAA Symp. Small Satell. Earth Obs., 2015.
    [21] T.-C. Huang, C.-T. Wu, and J.-C. Juang, “Implementation and Verification of Reliable Flight Software for CubeSats,” 7th Nano-Satellite Symp., 2016.
    [22] C. Honglong, X. Liang, Q. Wei, Y. Guangmin, and Y. Weizheng, “An integrated MEMS gyroscope array with higher accuracy output,” Sensors, vol. 8, pp. 2886–2899, apr 2008.
    [23] Q. Lam, N. Stamatakos, C. Woodruff, and S. Ashton, “Gyro Modeling and Estimation of Its Random Noise Sources,” in AIAA Guid. Navig. Control Conf. Exhib., vol. 5562, (Reston, Virigina), American Institute of Aeronautics and Astronautics, aug 2003.
    [24] C.-Y. Chong, “Design, Implementation and Verification of Mirco Satellite Attitude De- termination and Control Subsystem,” 2011.
    [25] N. A. Matteo and Y. T. Morton, “Ionosphere geomagnetic field: Comparison of IGRF model prediction and satellite measurements 1991-2010,” Radio Sci., vol. 46, no. 4, pp. 1–10, 2011.
    [26] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control. Springer, 2013.
    [27] M. Birkelund, “Satellite Dynamics and Control in a Quaternion Formulation ( 2nd edi- tion ) Satellite Dynamics and Control in a Quaternion Formulation,” 2010.
    [28] B. Wie, Space Vehicle Dynamics and Control. American Institute of Aeronautics and Astronautics, 2nd ed., 2008.
    [29] K.-c. Wu, I. Ouattara, G. Quinsac, J. Vannitsen, J.-J. Miau, J.-C. Juang, and S. Boris, “Dynamic Control of a CubeSat Attitude and Orbit Control System ( AOCS ) with propulsion for Deep-Space missions,” in 7th NanosatelliteSymposium, 2016.
    [30] N. Trawny and S. I. Roumeliotis, “Indirect Kalman Filter for 3D Attitude Estimation:A Tutorial for Quaternion Algebra,” tech. rep., 2005.
    [31] C. Moller, The theory of relativity. Delhi: Oxford University Press, 1972.
    [32] B. D. Tapley, Statistical orbit determination theory. Elsevier Academic Press, 1973. [33] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination
    and Control. Springer, 2013.

    [34] J. R. Wertz, Spacecraft Attitude Determination and Control. Astrophysics and Space Science Library, Springer Netherlands, 2012.
    [35] J. B. Kuipers and Others, Quaternions and rotation sequences, vol. 66. Princeton uni- versity press Princeton, 1999.
    [36] M. J. Sidi, Preface, pp. xvii–xviii. Cambridge Aerospace Series, Cambridge University Press, 1997.
    [37] E. D. Peters, Dynamic instabilities imparted by CubeSat deployable solar panels. PhD thesis, Massachusetts Institute of Technology, 2014.
    [38] E. Thébault, C. C. Finlay, C. D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand,
    T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson,
    F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot,
    T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F. J. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, V. Rid- ley, M. Rother, T. J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn,
    A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, and T. Zvereva, “Interna- tional Geomagnetic Reference Field: the 12th generation,” Earth, Planets Sp., vol. 67, no. 1, p. 79, 2015.
    [39] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” J. Geophys. Res. Sp. Phys., vol. 107, dec 2002.
    [40] S. A. Rawashdeh and J. E. Lumpp, “Aerodynamic Stability for CubeSats at ISS Orbit,”
    J. Small Satell., vol. 2, no. 1, pp. 85–104, 2013.
    [41] E. Titov, J. Burt, and E. Josyula, “Satellite Drag Uncertainties Associated with Atmo- spheric Parameter Variations at Low Earth Orbits,” J. Spacecr. Rockets, vol. 51, no. 3, pp. 884–892, 2014.
    [42] S. R. Starin and J. Eterno, “Attitude Determination and Control Systems,” Sp. Mission Eng. New SMAD, 2011.
    [43] Z. Várhegyi, “Trajectory analysis and preliminary mission design for QB50,” no. June, 2011.
    [44] a. Tewari, Atmospheric and Space Flight Dynamics. Birkhauser Boston, 2007. [45] 莊智清, 衛星導航. 全華圖書, 2012.
    [46] H. Curtis, Orbital Mechanics for Engineering Students. Butterworth-Heinemann, 2010.
    [47] Y. W. Jan and J. C. Chiou, “Attitude control system for ROCSAT-3 microsatellite: A conceptual design,” Acta Astronaut., vol. 56, no. 4, pp. 439–452, 2005.
    [48] A. C. Stickler and K. Alfriend, “Elementary Magnetic Attitude Control System,” J. Spacecr. Rockets, vol. 13, no. 5, pp. 282–287, 1976.
    [49] D. Myers, KALMAN FILTERING Theory:Theory and Practice Using MATLAB. 2002.

    [50] M. J. Meerman, U. Kingdom, and C. F. Class, “Kalman Filtering and the Attitude De- termination and Control Task,” 2004.
    [51] J. Eickhoff, “Simulating Spacecraft Systems,” vol. 1, p. 353, 2009.
    [52] R. Metzger, “Simple Stability Criterion for Spinning Satellites With Flexible Ap- pendages.,” Automatica, vol. 16, no. 5, pp. 481–486, 1980.
    [53] V. L., “ADCS Interface Control Document,” tech. rep., 2014.
    [54] J. Armstrong, C. Casey, G. Creamer, and G. Dutchover, “Pointing Control for Low Altitude Triple Cubesat Space Darts,” Small Satell. Conf., no. 202, pp. 1–8, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE