| 研究生: |
吳羽千 Wu, Yu-Chien |
|---|---|
| 論文名稱: |
商用銅銦鎵硒細化過程中之相變及銅銦鎵硒薄膜緻密化之光電性質研究 Phase transformation of commercial CuIn0.7Ga0.3Se2 powders during Nano-milling process and photoelectric properties of CIGS absorber films |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 銅銦鎵硒 、奈米研磨 、相變 、硒化 、束縛燒結 、預燒結 |
| 外文關鍵詞: | CIGS, phase transformation, colloidal gelling, Selenization |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以漿料塗佈製程製備硒化銅銦鎵(CuIn0.7Ga0.3Se2;CIGS)薄膜太陽能電池之吸光層,漿料之粉末來源分為兩種,一為商用之銅銦鎵硒粉末,一為使用直接升溫法合成之黃銅礦結構相銅銦鎵硒奈米級粉末,將製備之漿料以旋鍍法塗佈至基板上形成厚度在1-2 μm間之銅銦鎵硒薄膜,加熱乾燥後置於300℃下去除有機載體,後續進行兩階段之燒結熱處理以期形成良好之銅銦鎵硒薄膜吸收層,兩階段燒結分別為:首先於高壓氮氣氣氛下預燒結,增加薄膜之機械強度以及緻密性,接著將薄膜置於石墨坩堝內提供硒氣氛並於外在氮氣氣氛為負壓之條件下進行硒化製程。本研究發現商用之銅銦鎵硒粉末於細化製程後產生相變現象,並進行其相變粉末之分析。以直接升溫法合成之銅銦鎵硒粉末,其所製成的前驅物經兩階段燒結熱處理形成緻密性佳且表面均勻之銅銦鎵硒薄膜,此燒結條件可改善薄膜與基板間之束縛燒結,降低基板對薄膜張應力之影響,形成光電性質良好的銅銦鎵硒薄膜。本研究之硒化製程並未使用高毒性之H2Se氣體,並且以旋鍍漿料之方式取代高成本的真空製程進行銅銦鎵硒薄膜之製備,此製程方法簡單、成本較低、過程安全,可以應用於大面積生產,上述優點皆能使銅銦鎵硒薄膜太陽能電池更加普及化,使其成為替代能源的主力之一。
To solve defect, such as cracks, porous structure that easily occur in the process of copper indium gallium selenide (CIGS) absorption thin films by using non-vacuum process, the study used two kinds of CIGS powder, one prepared CIGS nanocrystallites (CuIn0.7Ga0.3Se2) by Heating-up method, and the other was commercial CIGS. A N2 gas-pressure pre-sintering treatment was applied to enhance the densification and suppress the in-plane tensile stress which generated by the shrinkage mismatch between the CIGS and Mo-coated glass substrate. Subsequently, the CIGS precursors were converted into CIGS absorption thin films by Selenization process at different temperature under different external N2 atmosphere pressure using selenide powder as Se atmosphere source. The microstructure, cross section, crystalline structure, photoelectric properties of the CIGS thin films were investigated using X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Hall-effect analyzer. Here, we found the phase transformation of commercial CIGS during Nano-milling process and characterized by XRD, HRTEM and XPS. A uniform microstructure with large grain size and small amount of isolated residual pores and good electric properties CIGS absorption thin film was prepared at 500℃ for 25min under Se atmosphere with N2 negative pressure outer atmosphere.
[1] https://www.nrel.gov/pv/cell-efficiency.html, (2018).
[2] M. Powalla, S. Paetel, D. Hariskos, R. Wuerz, F. Kessler, P. Lechner, W. Wischmann and T. M. Friedlmeier, Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2, Engineering, 3, 4, 445-451, (2017).
[3] M. Gloeckler and J. R. Sites, Band-gap grading in Cu(In,Ga)Se2 solar cells, Journal of Physics and Chemistry of Solids, 66, 11, 1891-1894, (2005).
[4] A. M. Barnett and A. Rothwarf, Thin-film solar cells: A unified analysis of their potential, IEEE Transactions on Electron Devices, 27, 4, 615-630, (1980).
[5] S. Yoshida, Solar Frontier achieves world record thin-film solar cell efficiency of 22.9%, Solar Frontier, (2017).
[6] M. Powalla and B. Dimmler, Process development of high performance CIGS modules for mass production, Thin Solid Films, 387, 1-2, 251-256, (2001).
[7] J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernández, M. Wendl and F. H. Karg, CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability, Thin Solid Films, 451-452, 544-551, (2004).
[8] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, physica status solidi (RRL) - Rapid Research Letters, 10, 8, 583-586, (2016).
[10] C. Lokhande and S. Pawar, Electrodeposition of thin film semiconductors, Physica Status Solidi (a), 111, 1, 17-40, (1989).
[11] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, Hydrazine-based deposition route for device-quality CIGS films, Thin Solid Films, 517, 7, 2158-2162, (2009).
[12] S. Shirakata, Y. Kannaka, H. Hasegawa, T. Kariya and S. Isomura, Properties of Cu (In, Ga) Se2 thin films prepared by chemical spray pyrolysis, Japanese Journal of Applied Physics, 38, 9R, 4997, (1999).
[13] M. Kaelin, D. Rudmann and A. N. Tiwari, Low cost processing of CIGS thin film solar cells, Solar Energy, 77, 6, 749-756, (2004).
[14] B. Koo, R. N. Patel and B. A. Korgel, Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape, Journal of the American Chemical Society, 131, 9, 3134-3135, (2009).
[15] W. H. Hsu, H. I. Hsiang, Y. L. Chang, D. T. Ray and F. S. Yen, Formation Mechanisms of Cu(In0.7Ga0.3)Se2 Nanocrystallites Synthesized Using Hot-Injection and Heating-Up Processes, Journal of the American Ceramic Society, 94, 9, 3030-3034, (2011).
[16] J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1 − x)2 nanocrystallites, Journal of Materials Chemistry, 11, 5, 1417-1420, (2001).
[17] S. Ahn, K. Kim and K. Yoon, Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313-314, 171-174, (2008).
[18] T. J. Garino and H. K. Bowen, Kinetics of constrained‐film sintering, Journal of the American Ceramic Society, 73, 2, 251-257, (1990).
[19] W. H. Hsu, H. I. Hsiang, C. T. Chia and F. S. Yen, Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method, Journal of Solid State Chemistry, 208, 1-8, (2013).
[20] M. Park, S. Ahn, J. H. Yun, J. Gwak, A. Cho, S. Ahn, K. Shin, D. Nam, H. Cheong and K. Yoon, Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by a direct solution coating process, Journal of Alloys and Compounds, 513, 68-74, (2012).
[21] C. N. Bucherl, K. R. Oleson and H. W. Hillhouse, Thin film solar cells from sintered nanocrystals, Current Opinion in Chemical Engineering, 2, 2, 168-177, (2013).
[22] C. T. Yang and H. I. Hsiang, Different ligand exchange solvents effect on the densification of CuIn0.7Ga0.3Se2 prepared using the heating-up method, Applied Surface Science, 426, 1148-1157, (2017).
[23] L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li and Y. Sun, Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films, Solar Energy Materials and Solar Cells, 93, 1, 114-118, (2009).
[25] T. Wada, N. Kohara, T. Negami and M. Nishitani, Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu (In, Ga) Se2 solar cells, Japanese Journal of Applied Physics, 35, 10A, L1253, (1996).
[26] T. Sinha, D. Lilhare and A. Khare, Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review, Journal of Electronic Materials, 47, 2, 1730-1751, (2017).
[27] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Progress in Photovoltaics: Research and Applications, 11, 4, 225-230, (2003).
[28] A. Ennaoui, S. Siebentritt, M. C. Lux-Steiner, W. Riedl and F. Karg, High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers, Solar Energy Materials and Solar Cells, 67, 1-4, 31-40, (2001).
[30] S. Chen, X. Gong and S. H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys, Physical Review B, 75, 20, 205209, (2007).
[33] B. J. Stanbery, Copper Indium Selenides and Related Materials for Photovoltaic Devices, Critical Reviews in Solid State and Materials Sciences, 27, 2, 73-117, (2002).
[34] W. N. Shafarman, R. Klenk and B. E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap, Journal of Applied Physics, 79, 9, 7324-7328, (1996).
[35] S. Siebentritt, Wide gap chalcopyrites: material properties and solar cells, Thin Solid Films, 403, 1-8, (2002).
[36] W. N. Shafarman, R. Klenk and B. E. McCandless, Device and material characterization of Cu (InGa) Se2 solar cells with increasing band gap, Journal of Applied Physics, 79, 9, 7324-7328, (1996).
[37] G. C. Park, H. D. Chung, C. D. Kim, H. R. Park, W. J. Jeong, J. U. Kim, H. B. Gu and K. S. Lee, Photovoltaic characteristics of CuInS2CdS solar cell by electron beam evaporation, Solar Energy Materials and Solar Cells, 49, 1-4, 365-374, (1997).
[38] T. Yukawa, K. Kuwabara and K. Koumoto, Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film, Thin Solid Films, 286, 1-2, 151-153, (1996).
[39] C. Suryanarayana, E. Ivanov, R. Noufi, M. Contreras and J. Moore, Synthesis and processing of a Cu-In-Ga-Se sputtering target, Thin Solid Films, 332, 1-2, 340-344, (1998).
[40] T. Sugimoto, Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science, 28, 65-108, (1987).
[41] V. K. LaMer and R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, Journal of the American Chemical Society, 72, 11, 4847-4854, (1950).
[42] X. Peng, J. Wickham and A. Alivisatos, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions, Journal of the American Chemical Society, 120, 21, 5343-5344, (1998).
[43] Z. A. Peng and X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, Journal of the American Chemical Society, 124, 13, 3343-3353, (2002).
[44] J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angewandte Chemie International Edition, 46, 25, 4630-4660, (2007).
[45] 游佩青, 類均質條件下奈米θ-Al2O3微粒之晶粒成長現象觀察, 成功大學資源工程學系學位論文, 1-121, (2008).
[46] P. W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics, 38, 1-2, 231-252, (1985).
[47] R. Bhaskar and M. Ola, DISPERSION PROCESS: ROLE IN THE FORMULATION OF PARTICULATE DISPERSE SYSTEM OF POORLY SOLUBLE DRUGS, Journal of Drug Delivery and Therapeutics, 3, 1, (2013).
[48] R. L. Penn and J. F. Banfield, Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2, American Mineralogist, 83, 9-10, 1077-1082, (1998).
[49] R. L. Penn and J. F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania, Geochimica et cosmochimica acta, 63, 10, 1549-1557, (1999).
[50] Y. w. Jun, J. s. Choi and J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angewandte Chemie International Edition, 45, 21, 3414-3439, (2006).
[51] H. Cölfen and S. Mann, Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures, Angewandte Chemie International Edition, 42, 21, 2350-2365, (2003).
[52] T. Vossmeyer, G. Reck, L. Katsikas, E. Haupt, B. Schulz and H. Weller, A" double-diamond superlattice" built up of Cd17S4 (SCH2CH2OH) 26 clusters, Science, 267, 5203, 1476-1479, (1995).
[53] D. Guimard, N. Bodereau, J. Kurdi, J. Guillemoles, D. Lincot, P. P. Grand, M. B. Farrah, S. Taunier, O. Kerrec and P. Mogensen, Efficient Cu(In, Ga)Se 2 Based Solar Cells Prepared by Electrodeposition, MRS Online Proceedings Library Archive, 763, (2003).
[54] Q. Guo, G. M. Ford, R. Agrawal and H. W. Hillhouse, Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks, Progress in Photovoltaics: Research and Applications, 21, 1, 64-71, (2013).
[55] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer and A. N. Tiwari, Low-cost CIGS solar cells by paste coating and selenization, Thin Solid Films, 480-481, 486-490, (2005).
[56] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada and M. Konagai, Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes, Physica Status Solidi (a), 203, 11, 2593-2597, (2006).
[57] E. Lee, S. J. Park, J. W. Cho, J. Gwak, M.-K. Oh and B. K. Min, Nearly carbon-free printable CIGS thin films for solar cell applications, Solar Energy Materials and Solar Cells, 95, 10, 2928-2932, (2011).
[58] V. K. Kapur, A. Bansal, P. Le and O. I. Asensio, Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks, Thin Solid Films, 431-432, 53-57, (2003).
[60] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics, Journal of the American Chemical Society, 130, 49, 16770-16777, (2008).
[61] Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal and H. W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells, Nano letters, 8, 9, 2982-2987, (2008).
[62] W. Wang, Y. W. Su and C. h. Chang, Inkjet printed chalcopyrite CuInxGa1−xSe2 thin film solar cells, Solar Energy Materials and Solar Cells, 95, 9, 2616-2620, (2011).
[63] A. R. Uhl, C. Fella, A. Chirilă, M. R. Kaelin, L. Karvonen, A. Weidenkaff, C. N. Borca, D. Grolimund, Y. E. Romanyuk and A. N. Tiwari, Non-vacuum deposition of Cu(In,Ga)Se2 absorber layers from binder free, alcohol solutions, Progress in Photovoltaics: Research and Applications, 20, 5, 526-533, (2012).
[64] W. Wang, S. Y. Han, S. J. Sung, D. H. Kim and C. H. Chang, 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks, Phys Chem Chem Phys, 14, 31, 11154-9, (2012).
[65] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device, Advanced Materials, 20, 19, 3657-3662, (2008).
[66] T. K. Todorov, O. Gunawan, T. Gokmen and D. B. Mitzi, Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Progress in Photovoltaics: Research and Applications, 21, 1, 82-87, (2013).
[67] P. Luo, Z. Liu, Y. Ding and J. Cheng, A novel non-vacuum process for the preparation of CuIn(Se,S)2 thin-film solar cells from air-stable, eco-friendly, metal salts based solution ink, Journal of Power Sources, 274, 22-28, (2015).
[68] S. J. Park, J. W. Cho, J. K. Lee, K. Shin, J.-H. Kim and B. K. Min, Solution processed high band-gap CuInGaS2 thin film for solar cell applications, Progress in Photovoltaics: Research and Applications, 22, 1, 122-128, (2014).
[69] A. Duchatelet, T. Sidali, N. Loones, G. Savidand, E. Chassaing and D. Lincot, 12.4% Efficient Cu(In,Ga)Se2 solar cell prepared from one step electrodeposited Cu–In–Ga oxide precursor layer, Solar Energy Materials and Solar Cells, 119, 241-245, (2013).
[71] T. B. Harvey, I. Mori, C. J. Stolle, T. D. Bogart, D. P. Ostrowski, M. S. Glaz, J. Du, D. R. Pernik, V. A. Akhavan, H. Kesrouani, D. A. Vanden Bout and B. A. Korgel, Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films, ACS Appl Mater Interfaces, 5, 18, 9134-40, (2013).
[72] H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang and Y. Li, A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent, Nanotechnology, 18, 2, 025602, (2006).
[73] J. Tang, S. Hinds, S. O. Kelley and E. H. Sargent, Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu (InGa) Se2 Nanoparticles, Chemistry of Materials, 20, 22, 6906-6910, (2008).
[74] Y.-H. A. Wang, C. Pan, N. Bao and A. Gupta, Synthesis of ternary and quaternary CuInxGa1− xSe2 (0≤ x≤ 1) semiconductor nanocrystals, Solid State Sciences, 11, 11, 1961-1964, (2009).
[75] C. B. Murray, A. C. Kagan and M. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annual Review of Materials Science, 30, 1, 545-610, (2000).
[76] Y. H. Yang and Y. T. Chen, Solvothermal preparation and spectroscopic characterization of copper indium diselenide nanorods, The Journal of Physical Chemistry B, 110, 35, 17370-17374, (2006).
[78] H. P. Kuo, H. A. Tsai, A. N. Huang and W. C. Pan, CIGS absorber preparation by non-vacuum particle-based screen printing and RTA densification, Applied Energy, 164, 1003-1011, (2016).
[79] M. N. Rahaman, Ceramic processing and sintering. New York: M, Dekker, 567, 573, (2003).
[80] W. H. Rhodes, Agglomerate and Particle Size Effects on Sintering Yttria‐Stabilized Zirconia, Journal of the American Ceramic Society, 64, 1, 19-22, (1981).
[81] J. D. Park, Growth and Electrical Characterization of CuInSe2 Prepared by the Sintering Method, Journal of the Korean Physical Society, 25, 6, 536-540, (1992).
[82] N. Yamamoto, S. Ishida and H. Horinaka, Solid State Growth of CuInSe2 and CuInTe2, Japanese Journal of Applied Physics, 28, 10R, 1780, (1989).
[83] S. Ahn, K. Kim and K. Yoon, Nanoparticle derived Cu (In, Ga) Se2 absorber layer for thin film solar cells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 171-174, (2008).
[84] M. A. Contreras, M. J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward and K. Ramanathan, Optimization of CBD CdS process in high-efficiency Cu (In, Ga) Se2-based solar cells, Thin Solid Films, 403, 204-211, (2002).
[85] X. Niu, H. Zhu, X. Liang, Y. Guo, Z. Li and Y. Mai, Air-annealing of Cu (In, Ga) Se2/CdS and performances of CIGS solar cells, Applied Surface Science, 426, 1213-1220, (2017).
[86] T. Nakada, M. Mizutani, Y. Hagiwara and A. Kunioka, High-efficiency Cu (In, Ga) Se2 thin-film solar cells with a CBD-ZnS buffer layer, Solar energy materials and solar cells, 67, 1-4, 255-260, (2001).
[87] T. Yagioka and T. Nakada, Cd-Free Flexible Cu(In,Ga)Se2 Thin Film Solar Cells with ZnS(O,OH) Buffer Layers on Ti Foils, Applied Physics Express, 2, (2009).
[88] R. N. Bhattacharya, M. A. Contreras and G. Teeter, 18.5% Copper Indium Gallium Diselenide (CIGS) Device Using Single-Layer, Chemical-Bath-Deposited ZnS(O,OH), Japanese Journal of Applied Physics, 43, No. 11B, L1475-L1476, (2004).
[89] http://www.taiwan921.lib.ntu.edu.tw/mypdf/veee03.pdf,
[91] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, 19, 7, 894-897, (2011).
[92] R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk and H. W. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films, 517, 7, 2187-2190, (2009).
[93] S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim and K. Yoon, Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Current Applied Physics, 10, 4, 990-996, (2010).
[94] T. Wada, N. Kohara, S. Nishiwaki and T. Negami, Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells, Thin Solid Films, 387, 1-2, 118-122, (2001).
[95] 關中杰, p型Cu(In,Ga)S2及Cu2ZnSnS4光陰極的溶液法製備及其太陽能分解水性能研究, 南京大學研究生畢業論文, (2016).
[96] T. Lepetit, S. Harel, L. Arzel, G. Ouvrard and N. Barreau, KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics, Progress in Photovoltaics: Research and Applications, 25, 12, 1068-1076, (2017).
[97] H. Simchi, B. E. McCandless, T. Meng and W. N. Shafarman, Structure and interface chemistry of MoO3 back contacts in Cu (In, Ga) Se2 thin film solar cells, Journal of Applied Physics, 115, 3, 033514, (2014).
[98] C. T. Yang and H. I. Hsiang, Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process, Materials Research Bulletin, 97, 30-36, (2018).
[99] D. Hariskos, G. Bilger, D. Braunger, M. Ruckh and H. Schock, Investigations on the mechanism of the oxidation of Cu (In, Ga) Se2, TERNARY AND MULTINARY COMPOUNDS, 152, 707-710, (1998).
[100] I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. Österreicher, H. Alves, D. Hofmann, O. Ka, A. Polity, B. Meyer and D. Braunger, Annealing studies on CuIn (Ga) Se2: the influence of gallium, Thin Solid Films, 361, 400-405, (2000).
[101] U. Berner, D. Colombara, J. De Wild, E. V. Robert, M. Schütze, F. Hergert, N. Valle, M. Widenmeyer and P. J. Dale, 13.3% efficient solution deposited Cu (In, Ga) Se2 solar cells processed with different sodium salt sources, Progress in Photovoltaics: Research and Applications, 24, 6, 749-759, (2016).
[102] Q. Guo, G. M. Ford, R. Agrawal and H. W. Hillhouse, Ink formulation and low‐temperature incorporation of sodium to yield 12% efficient Cu (In, Ga)(S, Se)2 solar cells from sulfide nanocrystal inks, Progress in Photovoltaics: Research and Applications, 21, 1, 64-71, (2013).
[103] Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles, Journal of Applied Physics, 105, 11, (2009).
[104] S. Nishiwaki, S. Siebentritt, P. Walk and M. Ch. Lux‐Steiner, A stacked chalcopyrite thin‐film tandem solar cell with 1.2 V open‐circuit voltage, Progress in Photovoltaics: Research and Applications, 11, 4, 243-248, (2003).
[105] S. J. Park, E. Lee, H. S. Jeon, S. J. Ahn, M. K. Oh and B. K. Min, A comparative study of solution based CIGS thin film growth on different glass substrates, Applied Surface Science, 258, 1, 120-125, (2011).
[106] A. Zevalkink, E. S. Toberer, T. Bleith, E. Flage-Larsen and G. J. Snyder, Improved carrier concentration control in Zn-doped Ca5Al2Sb6, Journal of Applied Physics, 110, 1, 013721, (2011).
[107] I. Sanyal, K. Chattopadhyay, S. Chaudhuri and A. Pal, Grain boundary scattering in CuInSe2 films, Journal of applied physics, 70, 2, 841-845, (1991).
[108] S. H. Wei and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys, Journal of Applied Physics, 78, 6, 3846-3856, (1995).
[109] S. Chaisitsak, A. Yamada and M. Konagai, Preferred Orientation Control of Cu(In1-xGax)Se2(x≈0.28) Thin Films and Its Influence on Solar Cell Characteristics, Japanese Journal of Applied Physics, 41, Part 1, No. 2A, 507-513, (2002).
[111] S. U. Park, R. Sharma, K. Ashok, S. Kang, J. K. Sim and C. R. Lee, A study on composition, structure and optical properties of copper-poor CIGS thin film deposited by sequential sputtering of CuGa/In and In/(CuGa+In) precursors, Journal of Crystal Growth, 359, 1-10, (2012).
[112] W. Witte, R. Kniese and M. Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin Solid Films, 517, 2, 867-869, (2008).
[113] S. Shirakata, Photoluminescence characterization of Cu(In,Ga)Se2 solar-cell processes, physica status solidi (b), 252, 6, 1211-1218, (2015).