| 研究生: |
蔡奇諺 Tsai, Chi-Yan |
|---|---|
| 論文名稱: |
雌激素鍵結之蛋白質金奈米團簇-合成與特徵分析及其應用 Estrogen Functionalized Protein-Based Gold Nanoclusters - Synthesis, Characterization and Applications |
| 指導教授: |
陳淑慧
Chen, Shi-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 金奈米團簇 、雌激素 、點擊化學 、細胞顯影 |
| 外文關鍵詞: | gold nanaclusters, estrogen, click chemistry, cell imaging |
| 相關次數: | 點閱:91 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以蛋白質所包覆合成的金奈米團簇(gold nanoclusters,NCs)具有好的螢光特性及生物相容性,蛋白質上多種胺基酸提供了可修飾不同分子的優點,使之成為具有功能性與專一性的探針。研究中在牛血清蛋白質金奈米團(BSA-AuNCs)表面修飾上雌激素(17α-ethinyl estradiol, EE2),利用一段聚乙二醇(polyethylene glycol, PEG)具有疊氮基(azide)和胺基(amine),雌激素上的炔基(alkyne)能與疊氮基經由銅金屬催化行環化加成反應,形成1,4-雙取代-1,2,3-三氮唑的五員雜環。而PEG另一端胺基則可利用交聯試劑與蛋白質上的羧酸基經由醯胺化反應鍵結。將此合成出來的E2-BSA-AuNCs應用在乳癌細胞顯影上,在具有雌激素受體的MCF-7乳癌細胞中,E2-BSA-AuNCs會隨著時間由細胞膜慢慢進入細胞核,在時間2小時時已完全進入細胞核,推測E2-BSA-AuNCs是經由細胞膜的受體辨認而進入到細胞中並進入到細胞核中,而對照組BSA-AuNCs則無法進入細胞內;另以市售螢光染料Cyanine 3上修飾上雌激素(E2-Cy3)作為比較,反應時間在6小時才進入到細胞核,表示E2-BSA-AuNCs具有更好的生物相容性。而在不具雌激素受體MD-MBA-231乳癌細胞實驗結果顯示,E2-BSA-AuNCs不具有螢光訊號表現,但是E2-Cy3在細胞質卻有螢光表現,推測E2-Cy3是藉由被動傳輸進入到細胞中。另外以MTT試驗測試比較細胞增殖速率,實驗結果顯示在相同的藥品濃度下E2-BSA-AuNCs比E2-PEG具有較高的增殖率,顯示所合成的E2-BSA-AuNCs更容易進入到細胞核中作用。實驗中所合成的BSA-AuNCs及E2-BSA-AuNCs以質譜儀作為鑑定,金奈米團簇為15個金原子所組成,而有5個E2-PEG鍵結在蛋白質表面;而在原子力顯微鏡下,有修飾E2-PEG的粒子尺寸比未修飾的直徑變大約2nm;而E2-PEG與E2-Cy3的合成鑑定,經由質譜儀與核磁共振光譜作為鑑定。
Protein-protected fluorescent gold nanoclusters (AuNCs) have attracted many attentions due to their superior properties such as low toxicity, high biocompatibility and feasible functionalization. In this study, bovine serum albumin-protected AuNCs (BSA-AuNCs) was synthesized and functionalized with 17β-estradiol-azide-poly(ethylene glycol) conjugates (E2-PEG) via carbodiimide crosslinker chemistry (EDC/NHS) and used to selectively target estrogen receptor positive breast cancer cell. E2-PEG derivative was synthesized from Ethinyl Estradiol (EE2) by CuI-assisted azide-alkyne cycloaddition. The products, BSA-AuNCs and E2-BSA-AuNCs were purified by gel filtration chromatography or sucrose density gradient and characterized by fluorescence spectroscopy. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared spectroscopy (FT-IR), Matrix assisted laser desorption mass spectroscopy (MALDI-MS). The data showed each BSA-AuNCs contains eighteen Au atoms and five E2-PEG molecules with an emission maximum at around 640 nm (380 nm excitation) which was not much altered by E2-PEG conjugation. Furthermore, the volume of BSA-AuNCs (or E2-BSA-AuNCs) was found to expand by four times as compared to that of the native BSA. This resulted in a 4-fold decreased in density as observed by sucrose density gradient and yielded a loosely packed E2-BSA-AuNCs assembly. Based on a time course study using confocal fluorescence microscopy, E2-BSA-AuNCs were shown to selectively target estrogen receptor positive MCF-7(ER+) breast cancer cell by membrane ER assisted endocytosis rather than by passive diffusion of the free drug. In contrast, E2-Cy3 could not differentiate MCF-7(ER+) versus MDA-MB-231(ER-) cell due to the passive transport of the free estrogen. MTT assay reveals that AuNCs conjugation increases the estrogen potency by 1.6 folds due to increased rates of nuclei transport.
1. Mooradian, A., Photoluminescence of metals. Physical Review Letters 1969, 22 (5), 185.
2. Palmal, S.; Jana, N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (1), 102-110.
3. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-889.
4. Thomas, A., Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chemical Communications 2012, 48 (54), 6845-6847.
5. Duan, H.; Nie, S., Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. Journal of the American Chemical Society 2007, 129 (9), 2412-2413.
6. Zheng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society 2003, 125 (26), 7780-7781.
7. Yu, Y.; Yao, Q.; Luo, Z.; Yuan, X.; Lee, J. Y.; Xie, J., Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5 (11), 4606-4620.
8. Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T., Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano reviews 2012, 3, 14767_1-14767_16.
9. Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T., Magic-numbered Au n clusters protected by glutathione monolayers (n= 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. Journal of the American Chemical Society 2004, 126 (21), 6518-6519.
10. Guo, Y.; Wang, Z.; Shao, H.; Jiang, X., Stable fluorescent gold nanoparticles for detection of Cu 2+ with good sensitivity and selectivity. Analyst 2012, 137 (2), 301-304.
11. Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., One‐Pot Synthesis of Near‐Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging. Small 2011, 7 (18), 2614-2620.
12. Wang, Z.; Wu, L.; Cai, W.; Jiang, Z., Luminescent Au 11 nanocluster superlattices with high thermal stability. Journal of Materials Chemistry 2012, 22 (8), 3632-3636.
13. Sun, J.; Zhang, J.; Jin, Y., 11-Mercaptoundecanoic acid directed one-pot synthesis of water-soluble fluorescent gold nanoclusters and their use as probes for sensitive and selective detection of Cr 3+ and Cr 6+. Journal of Materials Chemistry C 2013, 1 (1), 138-143.
14. Shang, L.; Dörlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3 (5), 2009-2014.
15. Huang, T.; Murray, R. W., Visible luminescence of water-soluble monolayer-protected gold clusters. The Journal of Physical Chemistry B 2001, 105 (50), 12498-12502.
16. Zhou, R.; Shi, M.; Chen, X.; Wang, M.; Chen, H., Atomically Monodispersed and Fluorescent Sub‐Nanometer Gold Clusters Created by Biomolecule‐Assisted Etching of Nanometer‐Sized Gold Particles and Rods. Chemistry-a European Journal 2009, 15 (19), 4944-4951.
17. Tan, Y. N.; Lee, J. Y.; Wang, D. I., Uncovering the design rules for peptide synthesis of metal nanoparticles. Journal of the American Chemical Society 2010, 132 (16), 5677-5686.
18. Wei, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Robinson, H.; Tan, L. H.; Xing, H.; Hou, C., Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology 2011, 6 (2), 93-97.
19. Kong, Y.; Chen, J.; Gao, F.; Brydson, R.; Johnson, B.; Heath, G.; Zhang, Y.; Wu, L.; Zhou, D., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale 2013, 5 (3), 1009-1017.
20. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Analytical Chemistry 2011, 83 (4), 1193-1196.
21. Sun, C.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L.; Guo, Y.; Xu, L.; Lei, J.; Gao, N.; Anderson, G. J., Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. Journal of the American Chemical Society 2011, 133 (22), 8617-8624.
22. Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K., Insulin‐Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angewandte Chemie International Edition 2011, 50 (31), 7056-7060.
23. Qiao, J.; Mu, X.; Qi, L.; Deng, J.; Mao, L., Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging. Chemical Communications 2013, 49 (73), 8030-8032.
24. Chaudhari, K.; Xavier, P. L.; Pradeep, T., Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS nano 2011, 5 (11), 8816-8827.
25. Chen, Y.; Wang, Y.; Wang, C.; Li, W.; Zhou, H.; Jiao, H.; Lin, Q.; Yu, C., Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu 2+. Journal of Colloid and Interface Science 2013, 396, 63-68.
26. Annie Ho, J.-a.; Chang, H.-C.; Su, W.-T., DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Analytical Chemistry 2012, 84 (7), 3246-3253.
27. Bao, Y.; Yeh, H.-C.; Zhong, C.; Ivanov, S. A.; Sharma, J. K.; Neidig, M. L.; Vu, D. M.; Shreve, A. P.; Dyer, R. B.; Werner, J. H., Formation and Stabilization of Fluorescent Gold Nanoclusters Using Small Molecules†. The Journal of Physical Chemistry C 2010, 114 (38), 15879-15882.
28. Kreibig, U.; Vollmer, M., Optical properties of metal clusters. 1995.
29. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
30. Kubo, R., Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan 1962, 17 (6), 975-986.
31. Díez, I.; Ras, R. H., Few-atom silver clusters as fluorescent reporters. In Advanced Fluorescence Reporters in Chemistry and Biology II, Springer: 2010; pp 307-332.
32. Chen, T.; Xu, S.; Zhao, T.; Zhu, L.; Wei, D.; Li, Y.; Zhang, H.; Zhao, C., Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS applied materials & interfaces 2012, 4 (11), 5766-5774.
33. Vogel, C. L.; Cobleigh, M. A.; Tripathy, D.; Gutheil, J. C.; Harris, L. N.; Fehrenbacher, L.; Slamon, D. J.; Murphy, M.; Novotny, W. F.; Burchmore, M., Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology 2002, 20 (3), 719-726.
34. Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS nano 2011, 5 (12), 9718-9725.
35. Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M., Estrogen receptors: how do they signal and what are their targets. Physiological Reviews 2007, 87 (3), 905-931.
36. Welboren, W.-J.; Sweep, F. C.; Span, P. N.; Stunnenberg, H. G., Genomic actions of estrogen receptor α: what are the targets and how are they regulated? Endocrine-related Cancer 2009, 16 (4), 1073-1089.
37. Babiker, F. A.; De Windt, L. J.; van Eickels, M.; Grohe, C.; Meyer, R.; Doevendans, P. A., Estrogenic hormone action in the heart: regulatory network and function. Cardiovascular Research 2002, 53 (3), 709-719.
38. Moore, J. T.; Collins, J. L.; Pearce, K. H., The nuclear receptor superfamily and drug discovery. ChemMedChem 2006, 1 (5), 504-523.
39. Nadal, A.; Díaz, M.; Valverde, M. A., The estrogen trinity: membrane, cytosolic, and nuclear effects. Physiology 2001, 16 (6), 251-255.
40. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M., Bioconjugation by copper (I)-catalyzed azide-alkyne [3+ 2] cycloaddition. Journal of the American Chemical Society 2003, 125 (11), 3192-3193.
41. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V., Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. Journal of the American Chemical Society 2005, 127 (1), 210-216.
42. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as copper (I)-stabilizing ligands in catalysis. Organic letters 2004, 6 (17), 2853-2855.
43. Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S., Ultrathin Au nanowires and their transport properties. Journal of the American Chemical Society 2008, 130 (28), 8902-8903.
44. Li, H.-W.; Ai, K.; Wu, Y., Fluorescence visual gel-separation of dansylated BSA-protected gold-nanoclusters. Chemical Communications 2011, 47 (35), 9852-9854.
45. Veronez, I. P.; Daniel, J. S.; Júnior, C. E. C.; Garcia, J. S.; Trevisan, M. G., Development, characterization, and stability studies of ethinyl estradiol solid dispersion. Journal of Thermal Analysis and Calorimetry 2015, 120 (1), 573-581.
46. Deng, X.; Friedmann, C.; Lahann, J., Bio‐orthogonal “Double‐Click” Chemistry Based on Multifunctional Coatings. Angewandte Chemie International Edition 2011, 50 (29), 6522-6526.
47. Wileman, T.; Harding, C.; Stahl, P., Receptor-mediated endocytosis. Biochemical Journal 1985, 232 (1), 1.
48. Tamm, L. K.; Tatulian, S. A., Infrared spectroscopy of proteins and peptides in lipid bilayers. Quarterly Reviews of Biophysics 1997, 30 (04), 365-429.
49. Jackson, M.; Mantsch, H. H., The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical reviews in biochemistry and molecular biology 1995, 30 (2), 95-120.