簡易檢索 / 詳目顯示

研究生: 黃皓誠
Huang, Hao-Cheng
論文名稱: 具漸變能隙本質緩衝層之非晶/微晶矽薄膜太陽能電池特性研究
Performance Investigation of a-Si/μc-Si Thin Film Solar Cells with Graded-Bandgap Intrinsic Buffer Layer
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 漸變本質非晶碳化矽緩衝層非晶矽微晶矽雷射輔助電漿增強式化學氣相沉積系統薄膜太陽能電池
外文關鍵詞: graded buffer layer, thin film silicon solar cell, laser assisted plasma enhanced chemical vapor deposition system
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於非晶矽薄膜太陽能電池在長期照光後,非晶矽吸收層的能隙較大,所以無法有效吸收長波長的光,並且非晶矽薄膜隨使用時間增長而有光劣化的現象產生,導致非晶矽薄膜太陽能電池的轉換效率變低。為了改善上述非晶矽單一吸收層缺點,本論文結合非晶矽及微晶矽的各別互補優點,採用雙層本質非晶矽/本質微晶矽吸收層製作薄膜太陽能電池。因非晶矽的吸收係數較微晶矽大,故可以設計厚度較薄的吸收層,而微晶矽的能隙比非晶矽低,對於較長波段的光吸收能力較好,且較不容易有光劣化的現象。
    本論文利用二氧化碳雷射輔助電漿增強式化學氣相沉積系統沉積本質微晶矽薄膜,並將其應用於製作p-非晶碳化矽/i-非晶矽/i-微晶矽/n-非晶矽薄膜太陽能電池,其太陽能電池的光電效率從非晶矽為單一吸收層之4.59 %提升至5.69 %。
    除此之外,由於 p層與i層之間存在能隙差,因此在接面間會因能隙不連續而產生一能位障,增加光生載子在此處產生的復合機率,使載子無法順利被萃取到外部電路,並產生許多漏電路徑,導致整體太陽能電池元件效率下降。本部分研究在於改善p/i接面間的復合現象,在p/i接面間成長一漸變能隙本質非晶碳化矽緩衝層,藉由摻入不同流量比之甲烷,而產生不同本質非晶碳化矽緩衝層能隙值,使p/i接面能位障得以減緩,增加能隙間的連續,藉此改善接面間的缺陷,減少光生載子復合的機率,最終具非晶漸變能隙本質緩衝層之非晶/微晶矽薄膜太陽能電池效率提升至6.62 %。

    The weak bonding in amorphous silicon (a-Si) would be broken after the prelonged light illumination. It is the main reason to cause the low conversion efficiency of a-Si solar cells. The effect of light-induced degradation also named Staebler-Wronski effect. Although microcrystalline silicon (μc-Si) could absorb more light with stronger bonding, it exist leakage path at grain boundary and cause higher dark current. In this study, the a-Si/μc-Si solar cells with both type silicon in absorption layer would combine both advantage to applicate the follow-up research. Apart from this, the p/i interface in Si thin film solar cells exist the discontinuity energy band-gap and energy barrier height. It would restrict the charge carrier through the band offset and cause carrier recombination which decrease the conversion efficiency of solar cells. The i-a-SiC buffer layers with graded energy band-gap were inserted at p/i interface of the solar cells in order to improve the band offset. Finally, the advantage of slowing down the discontinuity energy band-gap with the i-a-SiC buffer layers inserted was applied to a-Si/μc-Si solar cells. The conversion efficiency achieved from 5.39 % to 6.62 % for an i-a-SiC buffer layer of thickness 10 nm.

    摘要 I 致謝 …………………………………………………………………….IX 目錄 …………………………………………………………………….XI 表目錄 XV 圖目錄 XVII 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究章節……………………………………………………………4 第二章 實驗原理簡介 5 2.1 太陽能電池工作原理 5 2.1.1 光電轉換原理 5 2.1.2 太陽能電池電流-電壓特性 5 2.1.3 內建電場 6 2.1.4 填充因子 7 2.1.5 漏電流及串、並聯電阻 7 2.1.6 轉換效率 8 2.1.7 太陽能光譜 8 2.2 矽薄膜製程系統及沉積方式簡介 9 2.2.1 雷射輔助電漿增強式化學氣相沉積系統 9 2.2.2 化學氣相沉積原理 11 2.3 薄膜光電特性量測系統原理 12 2.3.1 分光光譜分析儀 12 2.3.2 量子效率量測系統 12 2.3.3 轉換效率量測系統 12 2.4 矽薄膜之光學能隙計算方式 13 2.5 太陽能電池之串、並聯電阻估算方式 14 2.6 太陽能電池之能帶關係 14 第三章 元件製作流程 24 3.1 元件製程 24 3.1.1 元件結構設計 24 3.1.2 試片清潔 24 3.1.3 二氧化碳雷射輔助之矽基薄膜沉積 24 3.1.4 緩衝層沉積 25 3.1.5 元件製作 27 3.1.6 背部電極層製作 28 第四章 具漸變能隙之非晶/微晶太陽能電池薄膜及元件特性分析 30 4.1 具雷射輔助成長本質矽薄膜之非晶/微晶太陽能電池元件特性分析…. ……………………30 4.1.1 具雷射輔助成長本質微晶矽吸收層之太陽能電池特性分析 ………………………………………………………………...31 4.1.2 具不同非晶/微晶厚度之太陽能電池特性分析 32 4.2 本質非晶緩衝層之薄膜光學能隙分析 33 4.2.1 本質非晶碳化矽薄膜之光學能隙分析 33 4.3 具本質非晶碳化矽緩衝層於p/i接面之非晶/微晶太陽能電池元件特性分析 34 4.3.1 具不同中間能隙本質非晶碳化矽緩衝層厚度之太陽能電池暗電流分析 35 4.3.2 具不同中間能隙本質非晶碳化矽緩衝層厚度之太陽能電池特性分析 35 4.3.3 具不同中間能隙本質非晶碳化矽緩衝層厚度之太陽能電池外部量子效率分析 37 4.3.4 具漸變能隙本質非晶碳化矽緩衝層之太陽能電池元件特性分析 37 第五章 結論 55 參考文獻 57

    [1] 戴寶通、鄭晃忠,《太陽能電池技術手冊》,台灣電子材料與元件協會發行出版。
    [2] 翁敏航,《太陽能電池―原理、元件、材料、製程與檢測技術》,東華書局股份有限公司。
    [3] T. Karakawa, S. Higashi, H. Murakami and S. Miyazaki, “Nucleation study of hydrogenated microcrystalline silicon (µc-Si:H) films deposited by VHF-ICP”, Thin Solid Films, vol. 516, p. 3497, 2008.
    [4] T. Roschek, T. Repmann, J. Müller, B. Rech, and H. Wagner, “Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, p. 492, 2002.
    [5] B. Rech, T. Roschek, T. Repmann, J. Müller, R. Schmitz, W. Appenzeller, “Microcrystalline silicon for large area thin film solar cells”, Thin Solid Films, vol. 427, p. 157–165, 2003.
    [6] Osarumen O. Ogbomoa, Emeka H. Amalub , N.N. Ekerea , P.O. Olagbegi, “A review of photovoltaic module technologies for increased performance in tropical climate”, Renewable and Sustainable Energy Reviews, vol. 75, p. 1225-1238, 2017
    [7] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, vol. 31, p. 292, 1977.
    [8] Y. N. Guo, D. Y. Wei, S. Q. Xiao, S. Y. Huang, H. P. Zhou, and S. Xu, “Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma”, Journal of Applied Physics, vol. 113, p. 203505, 2013.
    [9] H. Y. Lee, Y. C. Lin, C. H. Chang, and C. Y. Tseng, “High performance and high stability mechanisms of microcrystalline silicon-based thin-film solar cells deposited by laser-assisted plasma-enhancement chemical vapor deposition system”, Solar Energy, vol. 107, p. 365, 2014.
    [10] L. W. Lai, H. Y. Lee, J. H. Cheng, and C. T. Lee, “Investigation of laser-assisted microcrystalline SiGe films deposited at low temperature”, Journal of Electronic Material, vol. 37, p. 167, 2008.
    [11] C. T. Lee, Y. F. Chen, and C. H. Lin, “Phase-separated Si nanoclusters form Si oxide matrix grown by laser-assisted chemical vapor deposition”, Nanotechnology, vol. 20, p. 025702, 2008.
    [12] C. T. Lee and M. Y. Tsai, “High performance mechanisms of near -infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system”, Optics Express, vol. 21, p. 6259, 2013.
    [13] Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov, and P. R. I. Cabarrocas, “Decoupling crystalline volume fraction and Voc in microcrystalline silicon pin solar cells by using a µc‐Si:H intrinsic layer”, physica status solidi (RRL)-Rapid Research Letters, vol. 2, p. 154, 2008.
    [14] A. Belfar, “Simulation study of the a-Si:H/nc-Si:H solar cells performance sensitivity to the TCO work function, the band gap and the thickness of i-a-Si:H absorber layer”, Solar Energy, vol. 144, p. 408, 2015.
    [15] O. Maslova, A. Brézard-Oudot, M. E. Gueunier-Farret, J. Alvarez, and J. P. Kleider, “Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells”, Journal of Applied Physics, vol. 118, p. 114507, 2015.
    [16] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells”, Progress in Photovoltaics: Research and Application, vol. 22, p. 362, 2014.
    [17] J. Ge, Z. P. Ling, J. Wong, T. Mueller, and A. G. Aberle, “Optimisation of intrinsic a-Si:H passivation layers in crystalline-amorphous silicon heterojunction solar cells”, Energy Procedia, vol. 15, p. 107, 2012.
    [18] Michael Stuckelberger, Rémi Biron, Nicolas Wyrsch, Franz-Josef Haug, Christophe Ballif, “Review: Progress in solar cells from hydrogenated amorphous silicon”, Renewable and Sustainable Energy Reviews, vol. 76, p. 1497-1523, 2017.
    [19] Gufran Ahmad, Sourav Mandal, Asok Kumar Barua, Tarun K. Bhattacharya, and Jatindra Nath Roy, “Band Offset Reduction at Defect-Rich p/i Interface Through a Wide Bandgap a-SiO:H Buffer Layer”, IEEE JOURNAL OF PHOTOVOLTAICS, vol. 7, p. 414-420, 2017.
    [20] Mitsuoki Hishida, Takeyuki Sekimoto, and Akira Terakawa, “Designing band offset of a-SiO:H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p–i–n junction”, Japanese Journal of Applied Physics, vol. 53, p. 092301, 2014.
    [21] R. Biron, C. Pahud, and F. J. Haug, “Origin of the Voc enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells”, Journal of Non-Crystalline Solids, vol. 358, p. 1958, 2012.
    [22] A. Belfar and H. Aït-Kaci, “ITO/p+nc-Si:H contact barrier effects on n-i-p′-p silicon solar cells performances”, Solar Energy Materials and Solar Cells, vol. 178, p. 438, 2013.
    [23] Rémi Biron, Céline Pahud, Franz-Josef Haug, Christophe Ballif, “Origin of the Voc enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells”, Journal of Non-Crystalline Solids, vol. 358, p. 1958–1961, 2012.
    [24] Wenhui Du, Xianbo Liao, Xiesen Yang, Henry Povolny, Xianbi Xiang, Xunming Deng, Kai Sun, “Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n–i–p solar cells”, Solar Energy Materials & Solar Cells, vol. 90, p. 1098-1104, 2006.
    [25] 張勁燕,《半導體製程設備》,五南圖書出版公司。
    [26] H. Y. Lee, T. C. Wang, and C. Y. Tseng, “Performance improvement of microcrystalline p-SiC/i-Si/n-Si thin film solar cells by using laser-assisted plasma enhanced chemical vapor deposition”, International Journal of Photoenergy, vol. 2014, p. 795152, 2014.
    [27] H. Xiao, Introduction to semiconductor manufacturing technology, Prentice Hall, 2000.
    [28] J. Tyczkowski, P. Kazimierski and E. Odrobina, “Dielectric and semiconducting Ge—C and Si—C thin films prepared by plasma deposition from organic compounds”, Surface and Coatings Technology, vol. 60, p. 609—612, 1993.
    [29] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin, vol. 3, p. 37, 1968.
    [30] Andrew Stapleton, Ben Vaughan, Bofei Xue, Elisa Sesa, Kerry Burke, Xiaojing Zhou, Glenn Bryant, Oliver Werzer, Andrew Nelson, A.L.David Kilcoyne, Lars Thomsen, Erica Wanless, Warwick Belcher, PaulDastoor, “A multilayered approach to polyfluorene water-based organic photovoltaics”, Solar Energy Materials & Solar Cells, vol. 102, p. 114-124, 2012.
    [31] D. Pysch, A. Mette, and S. W Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Solar Energy Materials and Solar Cells, vol. 91, p. 1698, 2007.
    [32] 施敏,《半導體元件與製作技術第三版》,國立交通大學出版。
    [33] Y. Poissant, P. Chatterjee, and P. Roca i Cabarrocas, “No benefit from microcrystalline silicon n layers in single junction amorphous silicon p-i-n solar cells”, Journal of Applied Physics, vol. 93, p. 170, 2003.
    [34] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, “Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity”, Applied Physics Letters, vol. 74, p. 1860, 1999.
    [35] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells”, Applied Physics Letters, vol. 90, p. 013503, 2007.
    [36] O. Maslova, A. Brezard-Oudot, M. E. Gueunier-Farret, J. Alvarez, W. Favre, D. Munoz, and J. P. Kleider, “Understanding inversion layers and band discontinuities in hydrogenated amorphous silicon/crystalline silicon heterojunctions from the temperature dependence of the capacitance”, Applied Physics Letters, vol. 103, p. 183907, 2013.
    [37] B. M. George, J. Behrends, A. Schnegg, T. F. Schulze, M. Fehr, L. Korte, B. Rech, K. Lips, M. Rohrmuller, E. Rauls, W. G. Schmidt, and U. Gerstmann, “Atomic Structure of Interface States in Silicon Heterojunction Solar Cells”, Physical Review Latters, vol. 110, p. 136803, 2013
    [38] J. Meier, R. Flückiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell – Crystalline or amorphous cell behavior”, Applied Physics Letters, vol. 65, p. 860, 1994.
    [39] Z. Yu, I. Pereyra, and M.N.P. Carreno, “Wide optical band gap window layers for solar cells”, Solar Energy Materials and Solar Cells, vol. 66, p. 155, 2001.
    [40] Chao-Chun Wang, Chueh-Yang Liu, Shui-Yang Lien, Ko-Wei Weng, Jung-Jie Huang, Chia-Fu Chen, Dong-Sing Wuu, “Hydrogenated amorphous silicon-germanium thin films with a narrow band gap for silicon-based solar cells”, Current Applied Physics, vol. 11, p-S50-S53, 2011
    [41] Shinji Takeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, and Keiichi Yamamoto, “Photoluminescence from Si1ÀxGex alloy nanocrystals”, PHYSICAL REVIEW B, vol. 61, p.988-992, 2000.
    [42] Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, “Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells”, Solar Energy Materials, vol. 6, p.299, 1982.
    [43] A. Soum-Glaude, G. Rambaud, S.E. Grillo, L. Thomas, “Investigation of the tribological behavior and its relationship to the microstructure and mechanical properties of a-SiC:H films elaborated by low frequency plasma assisted chemical vapor deposition”, Thin Solid Films, vol 519, p.1266-1271, 2010.
    [44] Audrey Soum-Glaude, Isabelle Bousquet, Laurent Thomas, Gilles Flamant, “Optical modeling of multilayered coatings based on SiC(N)H materials for their potential use as high-temperature solar selective absorbers”, Solar Energy Materials & Solar Cells, vol 117, p.315-323, 2013.
    [45] Hang-Beum Shin, David Saint John, Myung-Yoon Lee, Nikolas J. Podraza, and Thomas N. Jackson, “Electrical properties of plasma enhanced chemical vapor deposition a-Si:H and a-Si1-xCx:H for microbolometer applications”, Journal of Applied Physics, vol, 114, p.183705, 2013.
    [46] Guofu Hou, Jia Fang, QiHua Fan, Chang chun Wei, Jian Ni, Xiaodan Zhang, Ying Zhao, “Nanostructured silicon p-layer obtained by radio frequency power profiling process for high-efficiency amorphous silicon solar cell”, Solar Energy Materials & Solar Cells, vol, 134, p.395-399, 2015.
    [47] X. B. Liao, W. Wang, and X. Deng, “AMPS modeling of nanocrystalline si p-layer in a-Si nip solar cells”, IEEE Photovoltaic Specialists Conference, p. 1234, 2002.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE