| 研究生: |
紀子敬 Chi, Tzu-Ching |
|---|---|
| 論文名稱: |
以β酮/醛基磷酸二酯製備1,4-/1,5-二取代和1,4,5-三取代-1,2,3-三唑並探討其反應機構 Regioselective Synthesis of 1,4-/1,5-Disubstituted- and 1,4,5-Trisubstituted-1,2,3-Triazoles with β-Formyl/Keto-phosphonates and Investigation on the Mechanism |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 201 |
| 中文關鍵詞: | β-酮基磷酸二酯 、二取代-1,2,3 三唑 、三取代-1,2,3 三唑 、無過渡金屬 、立體選擇性 |
| 外文關鍵詞: | β-ketophosphonate, disubstituted-1,2,3 triazole, trisubstituted-1,2,3 triazole, metal free, regiospecific |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1,4,5-三取代-1,2,3-三唑具備多功能的性質,能夠在五環上同時修飾固定位向的三種特殊官能基,因此能夠有複合的效果,在藥物中十分常見。
本篇使用非金屬催化方法製備1,2,3-三唑,使用β-酮基磷酸二酯化合物4,在碳酸銫的鹼性下,脫氫後形成4的陰離子再更進一步與銫離子螯合,形成錯合物M’,而此錯合物會限制酮基與磷酯基在同一個位向,避開了反向合環的機會,因此能夠加快與疊氮化物5進行[3+2]合環,高產率且單一的獲得1,4,5-三取代-1,2,3-三唑產物,此種合成方式可以製備出4號位非拉電子基團的三取代三唑,這是過去合成方法較困難的,且延伸至1,4-/1,5-二取代-1,2,3-三唑,能仍保有良好的選擇性與不錯的產率。此外本方法在室溫、弱鹼條件,都相較過去的方法來得溫和,這點在官能基的耐受度上也能夠得到較好的發揮。
In this thesis, we provided the metal free and mild conditions to synthesize 1,4-/1,5-disubstituted- or 1,4,5-trisubstituted-triazoles to produce good to excellent yields. Under these conditions, 2‐oxopropylphosphonates 4 could be chelated by cesium cation to form intermediate M’. However, we noticed that the chelate effect not only increased the reaction rate of azide-enolate 1,3 dipolar cycloaddition but also inhibited the formation of by-products. Furthermore, we have studied the reaction through 1H / 31P NMR tracking. Based on those obtained results, we have put forward discussion and hypothesis aiming at the plausible mechanisms.
[1]. D. Dheer, V. Singh and R. Shankar, Bioorg. Med. Chem., 2017, 71, 30-54.
[2]. M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952-3015.
[3]. L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin and G. Jia, J. Am. Chem. Soc., 2005, 127, 15998-15999.
[4]. H. Gschwend, in Organic Synthesis Today and Tomorrow, Elsevier, 1981, pp. 163-172.
[5]. W. Li, Z. Du, J. Huang, Q. Jia, K. Zhang and J. Wang, Green Chem., 2014, 16, 3003-3006.
[6]. W. Li and J. Wang, Angew. Chem., Int. Ed. Engl., 2014, 53, 14186-14190.
[7]. A. B. Shashank, S. Karthik, R. Madhavachary and D. B. Ramachary, Chemistry, 2014, 20, 16877-16881.
[8]. L. J. Danence, Y. Gao, M. Li, Y. Huang and J. Wang, Chemistry, 2011, 17, 3584-3587.
[9]. G. Cheng, X. Zeng, J. Shen, X. Wang and X. Cui, Angew. Chem., Int. Ed. Engl., 2013, 52, 13265-13268.
[10]. J.-P. Wan, S. Cao and Y. Liu, Org. Lett., 2016, 18, 6034-6037.
[11]. X. Cui, X. Zhang, W. Wang, X. Zhong, Y. Tan, Y. Wang, J. Zhang, Y. Li and X. Wang, J. Org. Chem., 2021, 86, 4071-4080.
[12]. J. Thomas, S. Jana, J. John, S. Liekens and W. Dehaen, Chem. Commun., 2016, 52, 2885-2888.
[13]. D. González-Calderón, A. Fuentes-Benítes, E. Díaz-Torres, C. A. González-González and C. González-Romero, Eur. J. Org. Chem., 2016, 2016, 668-672.
[14]. N. T. Pokhodylo, O. Y. Shyyka, E. A. Goreshnik and M. D. Obushak, ChemistrySelect, 2020, 5, 260-264.
[15]. K. Nagatani, A. Minami, H. Tezuka, Y. Hoshino and M. Nakada, Org. Lett., 2017, 19, 810-813.
[16]. J. A Bisceglia and L. R Orelli, Curr. Org. Chem., 2015, 19, 744-775.
[17]. S.-M. Son and H.-K. Lee, J. Org. Chem., 2014, 79, 2666-2681.
[18]. M. Murai, M. Nakamura and K. Takai, Org. Lett., 2014, 16, 5784-5787.
[19]. N. Jelaiel, N. Said, S. Touil and M. L. Efrit, Phosphorus, Sulfur, Silicon Relat. Elem., 2010, 185, 2382-2392.
[20]. F. Palacios, D. Aparicio and J. Vicario, Eur. J. Org. Chem., 2002, 2002, 4131-4136.
[21]. L. A. Mitchell and B. J. Holliday, ACS Macro Lett., 2016, 5, 1100-1103.
[22]. D. McCabe, E. Duesler and R. T. Paine, Inorg. Chem., 1985, 24, 4626-4629.
[23]. T. Bottin-Strzalko, J. Corset, F. Froment, M. J. Pouet, J. Seyden-Penne and M. P. Simonnin, J. Org. Chem., 1980, 45, 1270-1276.
[24]. J. Kwiatkowski and Y. Lu, Asian J. Chem., 2014, 3, 458-461.
[25]. B. Arbusow, Pure Appl. Chem., 1964, 9, 307-336.
[26]. G. Buechi and J. Powell Jr, J. Am. Chem. Soc., 1970, 92, 3126-3133.
[27]. D. González‐Calderón, A. Fuentes‐Benítes, E. Díaz‐Torres, C. A. González‐González and C. González‐Romero, Eur. J. Org. Chem., 2016, 2016, 668-672.
[28]. L. Li, W. Huang, L. Chen, J. Dong, X. Ma and Y. Peng, Angew. Chem., 2017, 129, 10675-10680.
[29]. J. Gu and C. Cai, Org. Biomol. Chem., 2017, 15, 4226-4230.
[30]. I. J. Borowitz, M. Anschel and S. Firstenberg, J. Org. Chem., 1967, 32, 1723-1729.
[31]. X. Li, G. Hu, P. Luo, G. Tang, Y. Gao, P. Xu and Y. Zhao, Adv. Synth. Catal., 2012, 354, 2427-2432.
[32]. L.-L. Chen, J.-W. Zhang, W.-W. Yang, P. Chen, D.-Y. Chen and Y.-B. Wang, Org. Biomol. Chem., 2019, 17, 3003-3009.
[33]. T. Minami, M. Nakayama, K. Fujimoto and S. Matsuo, Chem. Commun., 1992, 190-191.
[34]. O. Di Pietro, N. Alencar, G. Esteban, E. Viayna, N. Szalaj, J. Vazquez, J. Juarez-Jimenez, I. Sola, B. Perez, M. Sole, M. Unzeta, D. Munoz-Torrero and F. J. Luque, Bioorg. Med. Chem., 2016, 24, 4835-4854.
[35]. K. Radwan-Olszewska, F. Palacios and P. Kafarski, J. Org. Chem., 2011, 76, 1170-1173.
[36]. T. Calogeropoulou, G. B. Hammond and D. F. Wiemer, J. Org. Chem., 1987, 52, 4185-4190.
[37]. N. T. Pokhodylo, Y. O. Teslenko, V. S. Matiychuk and M. D. Obushak, Synthesis, 2009, 2741-2748.
[38]. B. KASHEMIROV, V. Osipov and P. KHOKHLOV, ChemInform, 1994, 25.
[39]. T. Strzalko, J. Seyden-Penne, F. Froment, J. Corset and M.-P. Simonnin, Can. J. Chem., 1988, 66, 391-396.
[40]. M. B. Gazizov, V. V. Zverev, R. F. Karimova, K. M. Gazizov and O. G. Sinyashin, Doklady Chemistry, 2005, 401, 66-68.
[41]. K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, Chem. Commun., 2004, 470-471.
[42]. R. Vichai, T. Angkana, K. Kosan and N. Surachai, Chem. Lett., 1979, 8, 209-212.
[43]. T. Maji, A. Karmakar and O. Reiser, J. Org. Chem., 2011, 76, 736-739.
[44]. M. Shankar, H. MOHAN, U. V. Prasad, M. KRISHNA, P. RAO, T. Lakshmikumar and G. V. Subbaraju, Asian J. Chem., 2013, 25.
[45]. B. J. Lundy, S. Jansone-Popova and J. A. May, Org. Lett., 2011, 13, 4958-4961.
[46]. R. R. Milburn, K. McRae, J. Chan, J. Tedrow, R. Larsen and M. Faul, Tetrahedron Lett., 2009, 50, 870-872.
[47]. C. M. Moorhoff, Synth. Commun., 2003, 33, 2069-2086.
[48]. G.-Y. Zhang, C.-K. Li, D.-P. Li, R.-S. Zeng, A. Shoberu and J.-P. Zou, Tetrahedron, 2016, 72, 2972-2978.
[49]. R.-J. Song, Y.-Y. Liu, J.-C. Wu, Y.-X. Xie, G.-B. Deng, X.-H. Yang, Y. Liu and J.-H. Li, Synthesis, 2012, 44, 1119-1125.
[50]. F. Hammerschmidt and E. Zbiral, Chem. Inform., 1981, 12.
[51]. T. Moriguchi, K. Okada, K. Seio and M. Sekine, Lett. Org. Chem., 2004, 1, 140-144.
[52]. X. Liu, J. Wen, L. Yao, H. Nie, R. Jiang, W. Chen and X. Zhang, Org. Lett., 2020, 22, 4812-4816.
[53]. J. Huang and K. Matyjaszewski, Macromolecules, 2005, 38, 3577-3583.
[54]. M. Sacristán, J. C. Ronda, M. Galià and V. Cádiz, J. Appl. Polym. Sci., 2011, 122, 1649-1658.
[55]. R. Bodalski, T. J. Michalski and J. Monkiewicz, Phosphorus, Sulfur Relat. Elem., 1980, 9, 121-122.
[56]. S. M. A. Kedrowski and D. A. Dougherty, Org. Lett., 2010, 12, 3990-3993.
[57]. X.-H. Hu, X.-F. Yang and T.-P. Loh, Angew. Chem., Int. Ed., 2015, 54, 15535-15539.
[58]. E. J. Emmett, B. R. Hayter and M. C. Willis, Angew. Chem., Int. Ed., 2014, 53, 10204-10208.
[59]. X. Tao, W. Li, X. Ma, X. Li, W. Fan, L. Zhu, X. Xie and Z. Zhang, J. Org. Chem., 2012, 77, 8401-8409.
[60]. M. Murai, M. Nakamura and K. Takai, Org. Lett., 2014, 16, 5784-5787.
[61]. A. S. Demir and S. Tural, Tetrahedron, 2007, 63, 4156-4161.
[62]. R. D. Chambers and J. Hutchinson, J. Fluor. Chem., 1998, 92, 45-52.
[63]. B. Schilling, W. D. Woggon, A. Chougnet, T. Granier, G. Frater and A. Hanhart, WO Pat., 116 339, 2008.
[64]. J. M. Gil, J. H. Hah, K. Y. Park and D. Y. Oh, Synth. Commun., 2000, 30, 789-794.
[65]. Y. Zanella, S. Berté-Verrando, R. Dizière and P. Savignac, J. Chem. Soc., Perkin Trans. 1, 1995, 2835-2838.
[66]. M. Yamashita, H. Nomoto and H. Imoto, Synthesis, 1987, 716-718.
[67]. K. V. Tarasenko, V. D. Romanenko and A. E. Sorochinsky, J. Fluor. Chem., 2018, 211, 124-128.
[68]. L. Li, W. Huang, L. Chen, J. Dong, X. Ma and Y. Peng, Angew. Chem., Int. Ed., 2017, 56, 10539-10544.
[69]. K. Lee and D. F. Wiemer, J. Org. Chem., 1991, 56, 5556-5560.
[70]. M. Li, N. Zheng, J. Li, Y. Zheng and W. Song, Green Chem., 2020, 22, 2394-2398.
[71]. F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Eur. J. Org. Chem., 2010, 2010, 1875-1884.
[72]. M. Kitamura, M. Yano, N. Tashiro, S. Miyagawa, M. Sando and T. Okauchi, Eur. J. Org. Chem., 2011, 2011, 458-462.
[73]. H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem. Eur. J., 2011, 17, 5652-5660.
[74]. J. Waser, B. Gaspar, H. Nambu and E. M. Carreira, J. Am. Chem. Soc., 2006, 128, 11693-11712.
[75]. D. B. Ramachary, A. B. Shashank and S. Karthik, Angew. Chem., Int. Ed. Engl., 2014, 53, 10420-10424.
[76]. Y. Liu, W. Yan, Y. Chen, J. L. Petersen and X. Shi, Org. Lett., 2008, 10, 5389-5392.
[77]. J. Thomas, S. Jana, S. Liekens and W. Dehaen, Chem. Commun., 2016, 52, 9236-9239.
[78]. P. R. Clark, G. D. Williams, J. F. Hayes and N. C. O. Tomkinson, Angew. Chem., Int. Ed., 2020, 59, 6740-6744.
[79]. A. H. Banday and V. J. Hruby, Synlett, 2014, 25, 1859-1862.
[80]. H.-S. Dong, H.-R. Dong and T.-Q. Zhang, Journal of Chemical Crystallography, 2009, 39, 32-35.