簡易檢索 / 詳目顯示

研究生: 蕭志臻
Hsiao, Chih-chen
論文名稱: 通電熱處理效應對7075鋁合金顯微組織及拉伸性質之影響
Effects of Heat Treatment by Electrical Current on Microstructures and Tensile Properties of 7075 Aluminum Alloy
指導教授: 陳立輝
Chen, Li-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 電流7075鋁合金熱處理
外文關鍵詞: electrical current, 7075 aluminum alloy, heat treatment
相關次數: 點閱:212下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬材料在一定程度之機械加工,如深抽、壓延等製程之後,需對其進行適當之熱處理,來達到回復其機械性質之目的。傳統熱處理方法以長時間及高溫之持溫過程為必要手段,因此難以避免耗費大量能源與冗長時間;另外傳統熱處理設備必須依照各種工件的外型及尺寸來建置,亦會佔據大量廠房空間,也因此傳統熱處理手法無論在節約能源或者小型化的角度來看已有檢討改進的空間。
    7075鋁合金為熱處理型鋁合金系統中強度最高的材料之一,主要應用在航空材料及高強度的運動器材等,其可藉由一系列之熱處理來達到所需的特性需求。本研究選用7075鋁合金經冷加工深抽之硬線,為避免直流電(DC)之正負端差異性,以交流電(AC)進行實驗,探討通電熱處理效應對線材微觀組織與拉伸性質之影響,並進一步與經傳統熱處理部分退火之線材作對比。
    研究結果顯示,7075鋁合金硬線經過交流電(AC)通電熱處理後,可在甚短的時間內直接獲得再結晶晶粒。由微硬度測試可得知,經由交流電(AC)通電熱處理之材料整體呈現均質無方向性的微硬度值(Hv)分佈。在拉伸性質方面,硬線經適當之通電條件後,可大幅提升其延性與加工硬化率,有利於材料之後續加工;拉伸測試過程,有動態應變時效(DSA)現象,拉伸應力應變曲線會有不穩定之鋸齒狀抖動現象,應是材料之析出強化相分解(固溶化)所致。而將經通電處理後之材料,靜置於室溫中,會有自然時效的現象:在微硬度值(Hv)方面,會隨時間變化而緩慢上升;拉伸強度方面,會隨著時效時間增加而趨近一穩定峰值;總延伸率(TE)方面,則維持在一定水準(約10%)之上。此與經長時間傳統熱處理部分退火後之線材作比對,亦有近似的現象。

    When metals pass through certain degree of cold-working, for instance, deep drawing or rolling, we must apply them to some proper heat treatment for recovering their mechanical properties. Nevertheless, traditional heat treatment procedure accompanies with long time and high temperature, which means high energy cost. Also, traditional heat treatment facilities always take up much space and are restricted by shape and size of the work pieces. In consequence, from a point of view on energy-saving or miniaturization, we could do something advances on heat treatment techniques.
    7075 aluminum alloy, one of the highest strength heat-treatable aluminum alloys, which applied generally in aerospace and sporting goods, can be treated with a series of heat treatment to improve mechanical properties. In this research, we use AC current to avoid directional difference with DC current and try to figure out effects of heat treatment by electrical current on microstructures and tensile properties of 7075 aluminum alloy, compared with long-time traditional partial annealing heat treatment.
    The results show that we can directly get recrystallization grains from cold-worked 7075 aluminum alloy specimens after short-time applications of AC electrical current. From micro-hardness tests, material are homogeneous in hardness value without directional difference .When it comes to tensile properties, with proper conditions, AC electrical current can greatly improve the ductility and work-hardening rate of cold-worked 7075 aluminum alloy lines, which are beneficial for the following machining. Tensile tests show dynamic strain aging (DSA) in tensile stress-strain curves with a lot of serrations after electrical current loading. The phenomenon may be correlated with solute atoms solving into the matrix (solutionizing). And it comes with nature aging when we put specimens quietly in room-temperature atmosphere after electrical current loading. With the increasing time, micro-hardness value (Hv) will rise slowly, tensile strength comes to a steady value, and total elongation (TE) is maintained above a certain degree (about 10%). In this research, there are also similar effects upon specimens with long-time traditional partial annealing heat treatment.

    摘要 I Abstract II 致謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2-1 7075鋁合金(Al-Zn-Mg-Cu系鋁合金) 2 2-2 熱處理退火 2 2-3 電流效應對金屬之影響 3 2-3-1 電流效應對鋁合金熱處理時效析出行為(precipitation) 之影響 3 2-3-2 電流效應對高強度鋁合金析出強化相之影響 3 2-3-2 電流效應對非晶(amorphous)金屬之影響 4 2-3-3 電流效應對金屬熱處理再結晶(recrystallization)現象 之影響 4 2-4 電阻加熱法(resistance heating)應用於鋁合金 5 第三章 實驗步驟與方法 14 3-1 實驗用7075鋁合金硬線 14 3-2 交流電通電實驗 14 3-2-1 交流通電過程溫度記錄 14 3-2-2 交流通電熱處理實驗 15 3-3 熱處理比對實驗 15 3-3-1 部分退火熱處理實驗 15 3-3-2 固溶化(T4)與人工時效(T6)熱處理實驗 15 3-4 機械性質分析 16 3-4-1 微硬度(micro-hardness )試驗 16 3-4-2 拉伸試驗 16 3-5 微觀組織分析 16 3-5-1 微觀組織(OM)觀察 16 3-5-2 X-ray繞射分析(XRD) 17 3-5-3 EBSD分析 17 3-5-4 穿透式電子顯微鏡(TEM)觀察 17 第四章 實驗結果 21 4-1 試片於通電過程之溫度變化 21 4-2 光學顯微鏡(OM)金相觀察 21 4-3 微硬度(micro-hardness )試驗 22 4-4 拉伸試驗 23 4-4-1 抗拉強度(UTS)及降伏強度(YS)分析 23 4-4-2 總延伸率(TE)及均勻變形率(UE)分析 24 4-4-3 拉伸破斷面觀察 25 4-4-4 拉伸工程應力應變曲線 25 4-4-5 加工硬化率(strain-hardening rate) 26 第五章 討論 51 5-1 通電熱處理效應對硬線的顯微組織之影響探討 51 5-1-1 通電過程之溫度與電遷移效應 51 5-1-2 通電熱處理效應之晶粒徑與織構變化 52 5-2 通電熱處理效應對硬線拉伸性質之影響探討 54 5-2-1 通電與熱處理對拉伸性質之影響比較 54 5-2-2 加工硬化率 55 5-3 通電與熱處理部分退火後之自然時效效應探討 55 第六章 結論 77 參考文獻 78 自述 81

    1. J. E. Hatch, "Aluminum Properties and Physical Metallurgy", American Society for Metals, Metals Park, Ohio, pp.47-52, 1984.
    2. R. E. Reed-Hill and R. Abbaschian, "Physical Metallurgy Principles", 3rd Edition, pp.227-233, 1994.
    3. H. Conrad, "Effects of Electric Current on Solid State Phase Transformations in Metals", Material Science & Engineering A287, pp.227-237, 2000.
    4. T. Koppenaal and C. Simcoe, Transactions of Metal Society, American Institute of Material and Engineering 227, p.615, 1963.
    5. Y. Onodera and K. I. Hirano, Journal of Material Science 11, p.809, 1976.
    6. M. Shine and S. Herd, “Applied Physics” Letters 20, p.217, 1972.
    7. C. Barbosa and J. Dille, "A Microstructural Study of Flash Welded and Aged 6061 and 6013 Aluminum Alloys", Materials Characterization 57, pp.187-192, 2006.
    8. 王森五,「電遷移現象對高強度Al-Zn-Mg-Cu合金微觀組織及拉伸變形之效應」,國立成功大學碩士論文,中華民國九十五年。
    9. 鍾國益,「高強度Al-Cu系2017合金拉伸性質之通電劣化效應」,國立成功大學碩士論文,中華民國九十六年。
    10. A. Gupta, "Nanocrystallization of Amorphous Alloys: Comparison between Furnace and Current Annealing", Intermetallics 8, pp.287-291, 1999.
    11. N. Mitrovi´c and S. Roth "Magnetic Softening of Bulk Amorphous FeCrMoGaPCB Rods by Current Annealing Technique", Journal of Alloys and Compounds, pp.434-435, 2007.
    12. S. N. Kane, "Influence of Current Annealing, Stress, Torsion and D.C. Magnetic Field on Matteucci Effect in Amorphous Wires", Material Science & Engineering A304-306, pp.1055-1057, 2001.
    13. Z. S. Xu, Z. H. Lai and Y. X. Chen, "Effect of Electric Current on the Recrystallization Behavior of Cold Worked α-Ti", Scripta Metallurgica 22, pp.187-190, 1988.
    14. H. Conrad, A. F. Sprecher, W. D. Cao, X. P. Lu, H. Merchant, J. Crane and E. Chia, "Homogenization and Annealing of Aluminum and Copper Alloys", TMS, Warrendale, PA, p.227, 1990.
    15. H. Conrad, N. Karam and S. Mannan, "Effect of Electric Current Pulses on the Recrystallization of Copper", Scripta Metallurgica 17, pp.411-416, 1983.
    16. H. Conrad, N. Karam and S. Mannan, "Effect of Prior Cold Work on the Influence of Electric Current Pulses on the Recrystallization of Copper", Scripta Metallurgica 18, pp.275-280, 1984.
    17. H. Conrad, N. Karam, S. Mannan and A. F. Sprecher, "Effect of Electric Current Pulses on the Recrystallization Kinetics of Copper", Scripta Metallurgica 22, pp.235-238, 1988.
    18. H. Conrad, Z. Guo, M. Fisher, W. D. Cao, X. P. Lu and T. Chandra, ""Recrystallization, TMS, Warrendale, PA, p.301, 1990.
    19. H. Conrad, Z. Guo and A. F. Sprecher, "Influence of Co Addition on the Structure of the Precipitated Phase in Superalloys", Scripta Materialia 24, pp.301-306, 1990.
    20. H. Conrad, "Influence of An Electric or Magnetic Field on the Liquid–Solid Transformation in Materials and on the Microstructure of the solid", Material Science & Engineering A287, pp.205-212, 2000.
    21. M. Ishiguro, S. Maki and K. I. Mori, "Improvements in Mechanical Properties of Al–Mg–Si Alloy Sheets by Resistance Heat-treatment", Journal of Japan Institute of Light Metals, Vol. 54, No. 12, pp.562-566, 2004.
    22. M. Ishiguro, S. Maki and K. I. Mori, "Improvement of Product Strength and Press Formability of Al–Mg–Si Alloy Sheets by Resistance Heat Treatment and Artificial Aging", Journal of Japan Institute of Light Metals, Vol. 56, No. 6, pp.313-316, 2006.
    23. S. Makia, M. Ishiguro, K. I. Mori and H. Makinoc, "Thermo-mechanical Treatment Using Resistance Heating for Production of Fine Grained Heat-treatable Aluminum Alloy Sheets", Journal of Materials Processing Technology 177, pp.444-447, 2006.
    24. 黃展鴻,「摩擦攪拌7075鋁合金組織特性及拉伸性質之後熱處理效應探討」,國立成功大學碩士論文,中華民國九十六年。
    25. 洪敏雄,「工程材料實驗(I)-金屬材料實驗」,中國材料科學學會,第161~178頁,中華民國八十七年。
    26. C. Oldani1 and S. P. Silvetti, "Microstructure and Texture Evolution during the Annealing of a Lamination Steel", Scripta Material 43, pp.129-134, 2000.
    27. Z. N. Farhat, "Contribution of Crystallographic Texturing to the Sliding Friction Behavior of FCC and HCP Metals", Wear 250, pp.401-408, 2001.

    下載圖示 校內:2010-07-25公開
    校外:2010-07-25公開
    QR CODE