| 研究生: |
蔡俊慕 Tsai, Chun-Mu |
|---|---|
| 論文名稱: |
具翹曲效應之彎曲薄壁箱型結構之振動分析 Vibration analysis of curved thin-walled box structure including warping effect |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 翹曲 、薄壁 、箱型結構 、模態頻率 |
| 外文關鍵詞: | box structure, modal frequency, warping, thin-walled |
| 相關次數: | 點閱:180 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文所要探討的彎曲薄壁箱型結構是由上、下環形板和內、外部殼所組成。除了考慮沿此箱型結構三主軸之位移與轉角外,也考慮沿此結構橫截面之翹曲(warping)效應。應用這些位移建立此箱型結構內各個應力合成量與應力偶合成量,進而計算其應變能及動能。接著應用漢彌爾頓原理建立結構的統御方程式,並以模態分析法求解此結構in-plane與out-of-plane的模態頻率值,及探討結構之幾何參數對於模態頻率之影響。並證明兩相異模態頻率所對應的模態形狀函數組具有正交性。最後分析結構承受一集中負載之動態響應行為。
The purpose of this study is to formulate the equations of motion for a curved thin-walled box structure with a closed rectangular cross-section. The structure is composed of the plate/shells elements.
An analytical method is presented to examine the free vibration for both the in-plane and out-of-plane motion of the box structure. Further, the orthogonality of any two distinct sets of mode shape functions for both types of motions of the structure is derived. The effects of different geometric parameters on the modal frequencies of both types of motions of the structures are investigated. The dynamic behavior of curved thin-walled box structure under the action of a transient load is also investigated.
Results show the first modal frequency for the in-plane motion decreases, however, the first modal frequency for the out-of-plane motion increases slightly as the radius of curvature increases. A transient load acted on the outer shell will induce both the in-plane motion and the out-of-plane motion of the structure. However, a transient load acted on the upper annular plate will induce the out-of-plane motion only of the structure.
1. S. P. Timoshenko, J. M. Gere, Theory of Elastic
Stability, New York, McGraw-Hill, 2nd Ed., 1961.
2. V. Z. Vlasov, Thin-Walled Elastic Beams,
Washington, D. C. National science foundation,
2nd Ed., 1961.
3. A. E. H. Love, A Treatise on the Mathematical
Theory of Elasticity, 4th Ed., Dover, New York,
1944.
4. J. P. Den Hartog, Mechanical Vibrations, 4th
Ed., New York, McGraw-Hill, 1956.
5. L. F. Boswell, S. H. Zhang, ”An experimental
investigation of the behavior of thin-walled box
beams”, Thin-Walled Structures, Vol.3, pp.36-65
, 1985.
6. S. U. Benscoter, ”A theory of torsion bending
for multi-cell beams”, Journal Applied
Mechanics, Vol.21, No.1, pp.25-34, 1954.
7. N. W. Murray, Introduction to the Theory of
Thin-Walled Structures, Oxford, Clarendon Press,
1986.
8. 王海臨,應用有限元素-轉換矩陣法於中空樑結構之振
動分析,碩士論文-國立成功大學工程科學系,1997。
9. 邱怡達,曲形管之振動分析,碩士論文-國立成功大學
工程科學系,1998。
10. 張丙國,多跨距圓截面曲形中空樑承受移動負載之動
態響應分析,碩士論文-國立成功大學工程科學系,
1999。
11. 許志嘉,具有扭曲(warping)效應之曲形樑承受移動負
載的動態響應分析,碩士論文-國立成功大學工程科學
系,1999。
12. S. Heo & J. H. Kim & Y. Y. Kim, ”Significance
of distortion in thin-walled closed beam
section design”, International of Journal
Solids and Structures, Vol.40, pp. 633-648,
2003.
13. M. T. Piovan & V. H. Cortinez, ” Out-of-plane
vibration of shear deformation continuous
horizontally curved thin-walled beams”,
Journal of Sound and Vibration, Vol.237, No.1,
pp.101-118, 2000.
14. R. T. Wang, and C. M. Tsai, ”Vibration
analysis of cylindrically curved thin-walled
box beam”, Journal of the Chinese Society of
Mechanical Engineers, Vol.24, No.5, pp.467-478,
2003.
15. R. T. Wang, and C. M. Tsai, ”Free vibration
analysis of straight thin-walled box beam
including thickness warping effect”, Journal
of the Chinese Society of Mechanical Engineers,
Vol.24, No.6, pp.595-606, 2003.
16. 錢偉長,彈性力學,亞東出版,民88年8月一版。
17. Y. Y. Kim & Y. Kim, ”A one-dimensional theory
of thin-walled curved rectangular box beam
under torsion and out-of-plane bending”,
International Journal for Numerical Method in
Engineering, Vol.53, pp.1675-1693, 2002.
18. 王凱申,具有扭曲(warping)效應之中空薄壁曲形樑之
動態響應分析,碩士論文-國立成功大學工程科學系,
2003。
19. J. R. Vinson, The Behavior of Shells Composed
of Isotropic and Composite Materials, Kluwer
Academic Publishers, 1993.
20. R. T. Wang, and J. S. Lin, ”Vibration of
multispan frames due to moving loads”, Journal
of the Chinese Society of Mechanical Engineers,
Vol.18, No.2, pp.151-162, 1997.
21. A. S. Gendy, and A. F. Saleeb, ”Vibration
analysis of coupled extensional/flexural/
torsional modes of curved beams with arbitrary
thin-walled sections,” Journal of Sound and
Vibration, Vol.174, No.22, pp.261-274, 1994.
22. A. Prokic’, ” Stiffness method of thin-walled
beams with closed cross-section,” Computers
and Structures, Vol.81, pp.39-51, 2003.
23. J. M. Gere, and S. P. Timoshenko, Mechanics of
Materials, 2nd Ed., 1984.